J. Of College Of Education For Women vol. 25 (3) 2014

Software Security using Aspect-Oriented Software Development

Dr. Buthainah F. AL-Dulaimi Dr. Afaf Badea Al-Kaddo

Buthynna@yahoo.com Afatbad@yahoo.com
Amer Abdulmejeed Abdulrehman

amer6567@yahoo.com
College of Education for Women - Computer Dept.

Abstract

Aspect-Oriented Software Development (AOSD) is a technology that helps achieving
better Separation of Concern (SOC) by providing mechanisms to identify all relevant points
in a program at which aspectual adaptations need to take place. This paper introduces a
banking application using of AOSD with security concern in information hiding.
Keywords: Aspect-oriented, AOSD, Security Concern

ilaana ) g glail Ayl Jated aladiiealy il i) ()
Gaa e paallae jale 98y dilde a8 Ol gd Ay
Claalal) and - il iy il 4K

gadliall

Ll es sl bl pé g8 &yl e Soc, A Jead Jhall Biad e Al Jiaad Lia ol 95 2elis
e s sl L ) i€l ket Afindl 6 5l o3 cancic] Lealadl o) Ll e cidlan ol al o staall ddal jiall
e sladl) elidl 3 ¥ daiels AOSD alaiuly i jeas ol

1.Introduction

Aspect-Oriented Software Development (AOSD) is a new approach to software design
that addresses modularity problems that are not handled well by other approaches, including
Structured Programming and Object-Oriented Programming (OOP). AOSD complements, but
doesn't replace those approaches. An aspect is a module that encapsulates a concern. In some
approaches, an aspect may also contain classes and methods. The focus of Aspect-Oriented
Software Development (AOSD) is in the investigation and implementation of new structures
for software modularity that provide support for explicit abstractions to modularize concerns.
These modularized concerns are called aspects, and aspect-oriented approaches provide
methods to compose them. Some approaches denote a root concern as the base. Various
approaches provide different flexibility with respect to composition of aspects. AOSD allows
multiple concerns to be expressed separately and automatically unified into working systems
[1,2,3,4].

Typical enterprise and internet applications today have to address "concerns" like
security and the subsystems that provide these services can be implemented in a modular way.
However, to use these services, you must insert the same code fragments into various places
in the rest of the application to invoke these services. This compromises the overall system
modularity, because the same invocation code is scattered throughout the application. For
example, if we want to control access to certain services in the application, we could insert
authorization-checking at the beginning of every method that needs this control. It would now
be difficult and error prone to modify or replace this security approach later. Also, your
application code is now tangled with a code for the security (and probably other) concerns,
which both compromises clarity and makes it hard to reuse your code in another context.
Since you would have to drag along the same security approach, which may not be

- R§KQ -



J. Of College Of Education For Women vol. 25 (3) 2014

appropriate. Because concerns like security typically cut across a number of application
module boundaries, called cross-cutting concerns. [1, 2, 3, 4]

2. The Purpose for using AOSD

It stem from the problems caused by code scattering and tangling. The purpose of
Aspect-Oriented Software Development is to provide systematic means to modularize
crosscutting concerns. The implementation of a concern is scattered if its code is spread out
over multiple modules. The concern affects the implementation of multiple modules. Its
implementation is not modular. The implementation of a concern is tangled if its code is
intermixed with code that implements other concerns. The module in which tangling occurs is
not cohesive. Scattering and tangling often go together, even though they are different
concepts [1,2,3,4].

Aspect-oriented software development considers that code scattering and tangling are
the symptoms of crosscutting concerns. Crosscutting concerns cannot be modularized using
the decomposition mechanisms of the language (object or procedures) because they inherently
follow different decomposition rules. The implementation and integration of these concerns
with the primary functional decomposition of the system causes code tangling and scattering
[1,2,3,4].

Scattering and tangling of behavior are the symptoms that the implementation of a
concern is not well modularized. A concern that is not modularized does not exhibit a well-
defined interface. The interactions between the implementation of the concern and the
modules of the system are not explicitly declared. They are encoded implicitly through the
dependencies and interactions between fragments of code that implement the concern and the
implementation of other modules. The lack of interfaces between the implementation of
crosscutting concerns and the implementation of the modules of the system impedes the
development, the evolution and the maintenance of the system. [1, 2, 3, 4]

3.System Development

A module is primarily a unit of independent development. It can be implemented to a
large extent independently of other modules. Modularity is achieved through the definition of
well-defined interfaces between segments of the system. The lack of explicit interfaces
between crosscutting concerns and the modules obtained through the functional
decomposition of the system imply that the implementation of these concerns, as well as the
responsibility with respect to the correct implementation of these concerns, cannot be
assigned to independent development teams. This responsibility has to be shared among
different developers that work on the implementation of different modules of the system and
have to integrate the crosscutting concern with the module behavior. Furthermore, modules
whose implementation is tangled with crosscutting concerns are hard to reuse in different
contexts. Crosscutting impedes reuse of components. The lack of interfaces between
crosscutting concerns and other modules makes it hard to represent and reason about the
overall architecture of a system. As the concern is not modularized, the interactions between
the concern and the top-level components of the system are hard to represent explicitly.
Hence, these concerns become hard to reason about because the dependencies between
crosscutting concerns and components are not specified[1,2].

Finally, concerns that are not modularized are hard to test in isolation. The
dependencies of the concern with respect to behavior of other modules are not declared
explicitly. Hence, the implementation of unit test for such concerns requires knowledge about
the implementation of many modules in the system. An aspect-oriented approach supports the
implementation of concerns and how to compose those independently implemented
concerns|[3.,4].

- 5§50 _



J. Of College Of Education For Women vol. 25 (3) 2014

4.Aspect-Oriented Requirement Engineering

Aspect-oriented requirement Engineering focuses on the identification, specification
and representation of crosscutting properties (, mobility, availability and real-time constraints)
at the requirement level. Crosscutting properties are requirements, use cases or features that
have a broadly scoped effect on other requirements or architecture components. Aspect-
oriented requirements engineering approaches are techniques that explicitly recognize the
importance of clearly addressing both functional and non-functional crosscutting concerns in
addition to non-crosscutting ones. Therefore, these approaches focus on systematically and
modularly treating, reasoning about, composing and subsequently tracing crosscutting
functional and non-functional concerns via suitable abstraction, representation and
composition mechanisms tailored to the requirements engineering domain[3].

S.Aspect-oriented system architecture

Aspect-oriented system architecture focuses on the localization and specification of
crosscutting concerns in architectural designs. Crosscutting concerns that appear at the
architectural level cannot be modularized by redefining the software architecture using
conventional architectural abstractions. Aspect-oriented architecture starts from the
observation that we need to identify, specify and evaluate aspects explicitly at the architecture
design level to redesign a given architecture in which the architectural aspects are made
explicit.

6.Aspect-Oriented Modeling and Design

Aspect-oriented design has the same objectives as any software design activity, i.e.
characterizing and specifying the behavior and structure of the software system. Its unique
contribution to software design lies in the fact that concerns that are necessarily scattered and
tangled in more traditional approaches can be modularized. The process takes as input
requirements and produces a design model. The produced design model represents separate
concerns and their relationships[4].

7.System Maintenance and Evolution

The lack of support for the modular implementation of crosscutting concerns is
especially problematic when the implementation of this concern needs to be modified. The
comprehension of the implementation of a crosscutting concern requires the inspection of the
implementation of all the modules with which it interacts. Hence, modifications of the system
that affect the implementation of crosscutting concern require a manual inspection of all the
locations in the code that are relevant to the crosscutting concern. The system maintainer must
find and correctly update a variety of poorly identified situations[3].

8.Discussion

Traditional software development focuses on decomposing systems into units of
primary functionality, while recognizing that there are other issues of concern that do not fit
well into the primary decomposition. The traditional development process leaves it to the
programmers to code modules corresponding to the primary functionality and to make sure
that all other issues of concern are addressed in the code wherever appropriate. Programmers
need to keep in mind all the things that need to be done, how to deal with each issue, the
problems associated with the possible interactions, and the execution of the right behavior at
the right time. These concerns span multiple primary functional units within the application,
and often result in serious problems faced during application development and maintenance.
The distribution of the code for realizing a concern becomes especially critical as the
requirements for that concern evolve — a system maintainer must find and correctly update a

- R60 -



J. Of College Of Education For Women vol. 25 (3) 2014

variety of situations. Aspect-Oriented Software Development focuses on the identification,
specification and representation of cross-cutting concerns and their modularization into
separate functional units as well as their automated composition into a working system.

9.Bank Account Application Security using AOSD

Aspect-oriented programming entails breaking down program logic into distinct parts
(so-called concerns, cohesive areas of functionality). Nearly all programming paradigms
support some level of grouping and encapsulation of concerns into separate, independent
entities by providing abstractions (e.g., procedures, modules, classes, methods) that can be
used for implementing, abstracting and composing these concerns. But some concerns defy
these forms of implementation and are called crosscutting concerns because they "cut across"
multiple abstractions in a program.An aspect can also make binary-compatible structural
changes to other classes, like adding members or parents. For example, consider a banking
application with a conceptually very simple method for transferring an amount from one
account to another.

void transfer(Account fromAcc, Account toAcc, int amount) throws Exception {
if (fromAcc.getBalance() < amount) {
throw new InsufficientFundsException(); }
fromAcc.withdraw(amount);
toAcc.deposit(amount); }

However, this transfer method overlooks certain considerations that a deployed
application would require: it lacks security checks to verify that the current user has the
authorization to perform this operation; a database transaction should encapsulate the
operation in order to prevent accidental data loss; for diagnostics, the operation should be
logged to the system log, etc.

A version with all those new concerns, could look somewhat like this:

void transfer(Account fromAcc, Account toAcc, int amount, User user, logger logger)

throws Exception {

logger.info("Transferring money...");

if (! checkUserPermission(user)){
logger.info("User has no permission.");
throw new UnauthorizedUserException(); }

if (fromAcc.getBalance() < amount) {
logger.info("Insufficient funds.");
throw new InsufficientFundsException(); }
fromAcc.withdraw(amount);

toAcc.deposit(amount);

//get database connection

//save transactions

logger.info("Successful transaction.");}

In this example other interests have become tangled with the basic functionality
(sometimes called the business logic concern). Transactions, security, and logging all
exemplify cross-cutting concerns. Now consider what happens if we suddenly need to change
(for example) the security considerations for the application. In the program's current version,
security-related operations appear scattered across numerous methods, and such a change
would require a major effort. AOP attempts to solve this problem by allowing the

- R61 -



J. Of College Of Education For Women vol. 25 (3) 2014

programmer to express cross-cutting concerns in stand-alone modules called aspects. Aspects
can contain advice (code joined to specified points in the program) and inter-type
declarations (structural members added to other classes). For example, a security module can
include advice that performs a security check before accessing a bank account. The pointcut
defines the times (join points) when one can access a bank account, and the code in the advice
body defines how the security check is implemented. That way, both the check and the places
can be maintained in one place. Further, a good pointcut can anticipate later program changes,
so if another developer creates a new method to access the bank account, the advice will apply
to the new method when it executes.

So for the above example implementing logging in an aspect:

aspect Logger {
void Bank.transfer(Account fromAcc, Account toAcc, int amount, User user, Logger

logger) {

logger.info("Transferring money..."); }
void Bank.getMoneyBack(User user, int transactionld, Logger logger) {
logger.info("User requested money back."); }

// other crosscutting code...}

All accounts have some basic things in common: there will be a current balance, an
interest rate, and ways of depositing and withdrawing money. A normal savings account
might only have these features, but other types of account are likely to need to have further
information. For example, a current (cheque) account usually has an overdraft limit, and an
associated interest rate for when the account is overdrawn; a fixed deposit will have a
termination date when the money will be paid out; etc. A generic bank account class might
look something as in figure(1):

Account

balance, accountNumber
interestRate

deposit, withdraw
Figure(1): Generic Bank Account

The withdraw method, which should really check to make sure that there is enough
money in the account. If we now consider a cheque account this will need exactly the same
information as the generic Account class, plus additional data members for the overdraft limit
and overdraft interest rate figure (2):

ChequeAccount

balance, accountNumber
interestRate, overdraftLimit
overdraftIntRate

deposit, withdraw
Figure(2): Cheque Account with Additional Information

The diagrams are always used to show the relationships between classes that are

related by inheritance. For our simple example, the inheritance hierarchy would be as shown
in the figure(3).

- k67 -



J. Of College Of Education For Women vol. 25 (3) 2014

Account
Iolaazs
TR T Sl TP PO
diulorezLlBy.
depois

o owithdlracr

| ChequeAccount .

vl o m L Timi .
trenlraltloticts

Figure(3): The Inheritance Hierarchy
10. The Class Hierarchy for Account and ChequeAccount

Acecount ‘

i

=

Chequeheccount

. Savingsdccount . . CreditCardhcct

SpecialSavingsAcct - . GoldCardAcet

' FixedDe posithect

Figure (4): Class Hierarchy for Account and Cheque Account

11.Conclusions

This paper introduced the notion of AOSD. It argues that AOSD further enhance the
modularization of models by enabling encapsulation of crosscutting concerns. However, full
integration of AOSD in the system development is effective through supporting the life cycle
of the system. Particularly, there is a need for extending composition rules, providing tool
support, and automatically analyzing requirements and their aspect-oriented implementations
for the solution space.

- R63 -



J. Of College Of Education For Women vol. 25 (3) 2014

References

[1] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme Approach.
Addison Wesley, 2005.

[2] J. Kienzle, W. AlAbed, and J. Klein. Aspect-oriented multi-view modeling. In ACM,
editor, AOSD’09, Charlotteville, Virginia, USA, March 2009.

[3] J. Klein and J. Kienzle. Reusable Aspect Models. In 11th Aspect-Oriented Modeling
Workshop, September 2007.

[4] N. Loughran and A. Rashid. Framed Aspects: Supporting Variability and Configurability
for AOP. In International Conference on Software Reuse (ICSR-8), Springer, 2004.

- R64 -



