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Abstract
Cryptographic applications demand much more of a pseudo-random-sequence

generator than do most other applications. Cryptographic randomness does not mean just
statistical randomness, although that is part of it. For a sequence to be cryptographically
secure pseudo-random, it must be unpredictable.

The random sequences should satisfy the basic randomness postulates; one of them is
the run postulate (sequences of the same bit). These sequences should have about the same
number of ones and zeros, about half the runs should be of length one, one quarter of length
two, one eighth of length three, and so on.The distribution of run lengths for zeros and ones
should be the same. These properties can be measured deterministicallyand then compared to
statistical expectations using a chi-square test.

In this paper the Run Criterion, is calculated, it can be calculated for any key generator
before it be implemented or constructed (software or hardware).The cryptosystems: Linear,
Product and Brüer are chosen as study cases.

Keywords: stream cipher, keygenerator, linear feedback shift register, pseudo random
generator, run.

دراسة مقارنة لحساب خاصیة الانطلاق في انظمة التشفیر
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مستخلص
ان عشوائیة . ھ عشوائیة اكثر من اي تطبیقات اخرىان تطبیقات التشفیر تتطلب استخدام مولدات متتابعات شب

الشفرة لا تعني فقط الاحصاءات العشوائیة، وان كانت ھي جزء منھ، فعلى المتتابعة شبھ العشوائیة الشفریة الامینة ان تكون 
.غیر قابلة للتخمین

سلسلة من (طلاق المتتابعات العشوائیة یجب ان تحقق خواص العشوائیة، واحدھذه الخواص ھي خاصیة الان
، وحوالي نصف )0,1(فھذه المتتابعات یجب ان یكون لھا نفس العدد من الاصفار والواحدات ). الثنائیات المتشابھة

وان توزیع الانطلاقات الصفریة . وھكذا) 3(وثمنھا بطول ) 2(وربعھا بطول ) 1(الانطلاقات یجب ان تكون بطول 
.ومن ثم مقارنھاإحصائیا باستخدام اختبار مربع كاينظریابارات یمكن قیاسھاھذه الاخت.والواحدیة یجب ان یكون متساوي

تم اختیار ). برمجیا او مادیا(في ھذا البحث تم حساب مقیاس الانطلاق لمولد المفاتیح قبل عملیة التنفیذ او الانشاء 
.الخطي، الضربیوبرور كحالات دراسیة لھذا البحث: نظم التشفیر

1. Introduction
Cryptography is the study of mathematical techniques which are related to the aspects

of information security such as confidentiality, data integrity, entity authentication, and data
origin authentication [1].
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It is the art or science encompassing the principles and methods of transforming an
intelligible message into one that is unintelligible, and then retransforming that message back
to its original form [2].

In 1989, Staffelbach and Meier [3] presented two new so-called fast correlation attacks
which are more efficient than Siegenthaler’s attack in the case where the component LFSRs have
sparse feedback polynomials, or if they have low-weight polynomial multiples (e.g., each having
fewer than 10 non-zero terms) of not too large a degree.

Gustafson [4] considered alternative statistics for the runs test and the autocorrelation
test. Gustafson, Dawson, and Golić proposed a new repetition test which measures the
number of repetitions of l-bit blocks. The test requires a count of the number of patterns
repeated, but does not require the frequency of each pattern.

The security of GSM conversation is based on usage of the A5 family of stream ciphers.
Many hundred million customers in Europe are protected from over-the-air piracy by the stronger
version in this family, the A5/1 stream cipher. Other customers on other markets used the weaker
version, A5/2. The approximate design of A5/1 leaked in 1994, and in 1999 the exact design of
both A5/1 and A5/2 was discovered by Briceno[5]. A lot of investigations of the A5 stream
ciphers has been followed.

At FSE 2004, a new stream cipher called VMPC (ventromedial prefrontal cortex) [6]
was proposed by BartoszZoltak, which appeared to be a modification of the RC4 stream
cipher. In cryptanalysis, a linear distinguishing attack is one of the most common attacks on
stream ciphers. In this paper it was claimed that VMPC is designed especially to resist
distinguishing attacks [7].

Recently, a new European project eSTREAM [8] has started, and at the first stage of the
project 35 new proposals were received in May 2005. Although many previous stream ciphers were
broken, collected cryptanalysis experience allowed strengthening new proposals significantly, and
there are many of them that are strong against different kinds of attacks. One such good proposal
was the new stream cipher Grain.

The stream cipher Grain was developed by a group of researchers M. Hell, T.
Johansson, and W. Meier, and was especially designed for being very small and fast in
hardware implementation. It uses the key of length 80 bits and the IV is 64 bits, its internal
state is of size 160 bits. Grain used a nonlinear feedback shift register (NLFSR) and a linear
feedback shift register (LFSR), and the idea to use NLFSR is quite new in modern
cryptography [9].

Dragon is a word oriented stream cipher submitted to the eSTREAM project, designed
by a group of researchers, Ed Dawson et al. It is a word oriented stream cipher that operates on
key sizes of 128 and 256 bits. The original idea of the design is to use a Nonlinear Feedback
Shift Register (NLFSR) and a linear part (counter), combined by a filter function to generate a
new state of the NLFSR and produce the keystream. The internal state of the cipher is 1088 bits,
which is updated by a nonlinear function denoted by F. This function is also used as a filter
function producing the keystream. The idea to use a NLFSR is quite modern, and there are not
many cryptanalysis techniques on NLFSRs yet developed[10].

2. Number Theory
Definition (1)[11]:A positive integer n>1 that has only two distinct factors, 1 and n itself
(when these are different), is called prime; otherwise, it is called composite. The first few
prime numbers are: 2,3,5,7,11,13,17,….
Theorem (1)[12]: (the fundamental theorem of arithmetic)

Any positive integer n>1 can be written uniquely in the following prime factorization
form:
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Figure (1) Encryption Process.
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where p1<p2<…<pk are primes, and 1, 2,…, k are positive integers.
Definition (2)[13]: Let a and b be two integers, not both zero. The largest divisor d s.t.d|a and
d|b is called the greatest common divisor (gcd) of a and b, which is denoted by gcd(a,b).
Definition (3)[13]: Let a and b be two integers, not both zero. d is a common multiple of a
and b, the least common multiple (lcm) of a and b, is the smallest common multiple, which
is denoted by lcm(a,b).
Definition (4)[13]: Integers a and b are called relatively prime if gcd(a,b)=1. we say that
integers n1,n2,…nk are relatively prime if, whenever ij, we have gcd(ni,nj)=1, i,j, 1i,jk.
Theorem (2)[12]: Suppose a and b are two positive integers.

If a=



k

1i
i

ip and b=



k

1i
i

ip , then

gcd(a,b)=



k

1i
i

ip , where i=min(i,i), i, 1ik. …(2)

lcm(a,b)=



k

1i
i

ip , where i=max(i,i), i, 1ik.…(3)

Theorem (3)[12]: Suppose a and b are two positive integers, then

lcm(a,b)=
)b,agcd(

b.a
.…(4)

3. Terminology [14]
Cryptography (from the Greek Kryptós, “hidden” and gráphein, “to write”) is the

study of principles and techniques by which information can be concealed in ciphertexts and
later revealed by legitimates users employing the secret key, but in which it is either
impossible or computationally infeasible for an unauthorized person to do so. Cryptanalysis
(from the Greek Kryptós, and analyéin “to loosen”) is the science (and art) of recovering
information from ciphertexts without knowledge of the key. Both terms are subordinate to the
more general term Cryptology (from the Greek Kryptós, and logos, “word”). The
cryptography is concerned in Encryption and Decryption processes.

Now we have to present some important notations:
Message space M: a set of strings (plaintext messages) over some alphabet, that needs to be
encrypted.
Ciphertext space C: a set of strings (ciphertexts) over some alphabet that has been encrypted.
Key space K: a set of strings (keys) over some alphabet, which includes the encryption key ek
and the decryption key dk.
The Encryption process (algorithm) E: Eek(M)=C.
The Decryption process (algorithm) D: Ddk(C)=M.
The algorithms E and D must have the property that:
Ddk(C)=Ddk(Eek(M))=M.
The above situations shown in figure (1).

4. Stream
Cipher systems [15, 16]
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Stream ciphersare an important class of encryption algorithms. They encrypt
individual characters (usually binary digits) of a plaintext message one at a time, using an
encryption transformation which varies with time. The main properties of stream ciphers
separating them from block ciphers are that the encryption function works on individual
symbols (letters) of the underlying alphabet and that the encryption function is time-varying.

In stream ciphers, the message units are bits, and the key is usual produced by a random
bit generator. The plaintext is encrypted on a bit-by-bit basis.

The key is fed into random bit generator to create a long sequence of binary signals.
This “key-stream” k is then mixed with plaintext m, usually by a bit wise XOR (Exclusive-
OR modulo 2 addition) to produce the ciphertext stream, using the same random bit generator
and seed.

There is a vast body of theoretical knowledge on stream ciphers, and various design
principles for stream ciphers have been proposed and extensively analyzed. However, there are
relatively few fully-specified stream cipher algorithms in the open literature. This unfortunate state
of affairs can partially be explained by the fact that most stream ciphers used in practice tend to be
proprietary and confidential. By contrast, numerous concrete block cipher proposals have been
published, some of which have been standardized or placed in the public domain. Nevertheless,
because of their significant advantages, stream ciphers are widely used today, and one can expect
increasingly more concrete proposals in the coming years.
5. Combination Generator

One approach is to use NLFSRs in parallel; their outputs combined using an n-input binary
Boolean function or combining function (CF). [17].

Because LFSRs are inherently linear, one technique for removing the linearity is to feed the
outputs of several parallel LFSRs into a non-linear Boolean function to form a combination
generator. Various properties of such a combining functionare critical for ensuring the security of
the resultant scheme, for example, in order to avoid correlation attacks. [18].

Since a well-designed system should be secure against known plaintext attacks, an LFSR
should never be used by itself as a keystream generator. Nevertheless, LFSRs are desirable
because of their very low implementation costs[19].

For essentially all possible secret keys, the output sequence of an LFSR based
keystream generator should have the following properties:
1. large period.
2. large linear complexity.
3. good statistical properties.

It is emphasized that these properties are only necessaryconditions for a keystream
generator to be considered cryptographically secure. Since mathematical proofs of security of
such generators are not known, such generators can only be deemed computationally secure after
having withstood sufficient public scrutiny [20].

The LFSRs in an LFSR-based keystream generator may have known or secret connection
polynomials. For known connections, the secret key generally consists of the initial contents of
the component LFSRs. For secret connections, the secret key for the keystream generator
generally consists of both the initial contents and the connections.
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5.1Linear Generator[21]
The Linear generator, illustrated in figure (3), is defined by n-maximum-length LFSRs

whose lengths r1, r2,…, rn, where nZ+are pair wise relatively prime, with XOR combining
function:
F(x1,x2,..,xn) = x1x2…xn… (5)
This generator is considered weak, despite its good randomness, because of its weak linear
complexity.

5.2 Product Generator [21]
The Product generator, illustrated in figure (4), is defined by n-maximum-length

LFSRs whose lengths r1, r2,…, rn, where nZ+are pair wise relatively prime, with AND
combining function:

F(x1,x2,..,xn) = x1x2…xn =


n

1i
ix … (6)

This generator considered weak, despite its good linear complexity, because of its
weak randomness.

OUTPUT

LFSR1

LFSR2

LFSRn

AND

Figure (4) n-Product Generator.

OUTPUT

LFSR1

LFSR2

LFSRn

XOR

Figure (3) n-Linear Generator.

OUTPUT

LFSR1

LFSR2

LFSRn

CF

Figure (2) n-LFSR’s Generator with Combining Function
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5.3 Threshold Generator [22].
This generator as usual uses combining function called Majority function which is

balance and symmetric (which expect that this generator produces pseudo random generator).
This generator illustrated in figure (5) tries to get around the security problems by using a
variable number of LFSR’s. The theory is that if you use a lot of LFSRs, it’s harder to break
the cipher.

Take the output of a large number of LFSRs (use an odd number of them). Make sure
that the lengths of all the LFSRs are relatively prime and all the feedback polynomials are
primitive: maximize the period. If it is more than the half the output bits are 1, then the output
of the generator is 1. If more than half the output bits are 0, then the output of the generator is
0.

With three LFSRs, the output generator can be written as:
The Threshold generator using the non-linear combining function s.t:
F3(x1,x2,x3)=x1x2 x1x3 x2x3.

From the combing function of this generator, we expect that it has a larger linear
complexity (LC) [21]:
LC(S) = r1r2 + r1r3 + r2r3
where r1, r2, and r3 are the lengths of the first, second, and third LFSRs.

6. Implementation of Run Postulate
Lemma (1) shows a linear relation between the periodicity of n-KG and the periodicity of
combination of one or number of combined LFSR in the system.

P(S)= 


 


1n

0k

C

1t

t
kn

k
n
k

)R(P)1( …(7)

Such that 


 
1

0a
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1R1RRt
m )a(N21212)R(P t

m

t
m

t
m

t
m         …(8)

)a(N t
mR

denotes the number of binary of kind “a” of the sequence which is generated from

the component t
mR .

Depending on equation (7) and equation (5) we can find NS(a), s.t.

NS(a)= 


 



1n

0k

C

1t
R

k
n
k

t
kn

)a(N)1( , a=0, 1 …(9)

where
)!kn(!k

!nCn
k 


Equation (9) shows the relation between NS(a) and number of 0's (1's) obtained from the
possible combination of the length of combined LFSR's.

Figure (5) Threshold generator

Output

LFSR1

LFSR2

LFSR3

Majority function
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Example (1):
Let r1=2 and r2=3, then 2

0C =1, 2
1C =2, 1

1R  =r1=2, 2
1R =r2=3, 1

2R =r1+r2=5.

NS(a)= 
  


1

0k

C

1t
R

k
2
k

t
k2

)a(N)1( , a=0, 1 …(10)

NS(a)= )]a(N)a(N)[1()a(N 2
1

1
1

1
2 RRR

 =N5(a)+(-1)[N2(a)+N3(a)]

The results of calculating NS(a) from equation (9) are as follows:
a N2(a) N3(a) N5(a) NS(a)
0 1 3 15 11
1 2 4 16 10

Now we can calculate the runs of S depending on the runs of the maximal sequences
which are generated from the combinations t

mR which are known.

Let )a(N
t
mR

j  be the number of runs (a=0 for gaps and a=1 for blocks) with length j for

the combinations t
mR , and )a(N

S

j be the number of runs of kind a with length j for the
sequence S.
We can reformulate the Golomb's second postulate by:

1)0()1(
1




t
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t
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t
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t
m
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R NN

1)1()0(
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


t
m

t
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m
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R

R NN …(11)

22)(  jR
R

j

t
m

t
m

aN    When 1j 2R t
m  , a = 0, 1

The next lemma discuss the relation between the P( t
mR ) and the elements of the equation

(11).
Lemma (2):

 
 


t
m

t
mR

j a

R

j
t
m aNjRP

1

1

0
)()( …(12)

Proof:
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  …(13)

)a(Nj)a(N
t
m

t
m

t
m

R

1j

R

jR 


 …(14)
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using equation(14)
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Linear System (n-LKG)
Now we are ready to calculate the runs of the sequence S generated from linear

system.
First, let's rearrange the LFSR combined in the linear system (of course the

rearrangement does not effect on any results, since the XOR function is symmetric and
commutative) in increasing (decreasing) order. Its naturally that

n
mC

m
2
m

1
m R....RR  ,

1mn-1 and 1
n

t
m RR  , 1t t

mC , CD(P(ri))=1, i.

The length j of runs of the sequence S will be in the range 1j 1
nR  passing all the

combination less than 1
nR . So, when using equations (15) we get:
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If we extend the sum t
knR   to 1

nR (since the maximum run of S is 1
nR ) considering that

0)a(N
t
mR

j  , when j> t
mR , then equation (16) will be:
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Since the maximum run of S is 1
nR , then it's obvious that:
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1
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S

j )a(Nj)S(P …(18)

Comparing equation (17) and (18) we get:
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From equation (20) we can calculate the runs j of S, 1j 1
nR  for the linear system.

Table (1) shows the calculating of )a(N j

S

, for S generated from linear system.
From equation (13) we can calculate NS(a) by

)a(Nj)a(N j

SR

1j
S

1
n




                                                                     …(21)

Example (2):
Table (1) describes the calculating of runs j of the sequence S generated from the linear
system using r1=2, r2=3.
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Table (1) Calculates of runs j of S generated from the n-LKG
+1 -1

j a 1
2R =5 1

1R =2 2
1R =3 )a(N j

S
NS(a)

0 4 1 1 2 21
1 4 0 1 3 3
0 2 0 1 1 22 1 2 1 0 1 2
0 1 0 0 1 33 1 1 0 1 0 0
0 1 0 0 1 44 1 0 0 0 0 0
0 0 0 0 0 05 1 1 0 0 1 5

Sum 25-1=31 22-1=3 23-1=7 P(S)=21

Notice that from table (1) and equation (20), there is a little difference between )0(N j

S

and )1(N j

S

  values that will give a balance output which implies that S will pass the run test
successfully. The next two lemmas prove the 2ndGolomb randomness for runs of linear
system.

The next lemma proves the double relation between )a(N 1j

S

 and )a(N j

S
.

Lemma (3):
For the sequence S generated from linear system:
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nR …(22)

Proof:
From equation (21) we have:
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The next lemma describes the approximation frequency of gaps and blocks which are
from the same length.

Lemma (4):
For the sequence S generated from linear system

)1(N)0(N
S

j

S

j     , for 1j 1
nR -2
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Proof:
From equation (21) we have:
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From 2ndGolomb postulate, we have )1()0(
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Product System (n-PKG)
If the equivalent LFSR with length L, then there is no guarantee that the maximum gap is

with length L-1, since the generated S is not maximalsequence, while we may find gap with
length Gms.t.

Gm= nr)1r(G
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Where Gmi denotes length of the maximum gap in the LFSR number i, and not repeated
again. Gm happened from the union of all the maximum gaps in every combined LFSR in n-PKG,

and it’s obvious that 1)a(N mG

S

 .
The maximum block Bm happened from the intersection of all maximum block in

every combined LFSR in n-PKG, so if Bmi is the length of the maximum block of the LFSR
number i, then
Bm=min(Bm1,Bm2,…,Bmn)=min(r1,r2,…,rn)=rm

Where rm is the minimum LFSR in n-PKG, it happened more than one time. In fact GmBm,
so we can’t compare them.

Example (3):
Let r1=2, r2=3 and r3=5, table (2) shows the statistics of the number of runs (gaps and blocks)
of the sequence S generated from of 3-PKG for three different initial values of combined
LFSR’s.

Table (2) the statistics of the number of runs of 3-PKG
Number of runsInitial

value a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 16 28 8 12 16 9 4 5 2 1 3 0 2 3 1 1 1I1 1 96 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 16 29 9 12 15 9 4 5 2 1 3 0 2 3 1 1 1I2 1 96 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 16 29 9 13 16 9 3 5 2 1 3 0 2 3 1 1 1I3 1 96 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

From table (2) we notice the unbalance between the numbers of gaps with each other,
from a side, and with numbers of blocks from the same length, from another side. Notice that
the maximum block is of length 2, and no relation of double between the number of runs with
length j and length j+1. These results will make the sequence S generated from n-PKG not
satisfies the 2ndGolomb’s postulate.
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Brüer System (3-BKG)
Since the output of the majority function is balance so it includes strings with closed
distribution, and since the runs are part from these strings, then they will be distributed
closely.

Example (4):
Let r1=5, r2=7 and r3=11, table (3) shows the statistics of the number of runs (gaps and blocks) of
the sequence S generated from 3-BKG.

Table (3) the statistics of the number of runs of 3-BKG
Number of runsj
0 1

1 1032527 1003599
2 512688 509442
3 252154 260403
4 139916 113067
5 46064 52952
6 29353 32882
7 17702 20539
8 4194 6037
9 2787 3054
10 974 808
11 414 381
12 255 227
13 127 97

From table (3) we notice the semi-balance between the numbers of gaps with each
other, from a side, and with numbers of blocks from the same length, from another side.
Notice that the relation of double between the number of runs with length j and length j+1.
These results will make the sequence S generated from 3-BKG satisfies the 2ndGolomb’s
postulate.

7. Applying of Chi-Square of Run Test on Study Cases
In this section we will apply chi-square test on the results gotten from calculations of

the run postulates on three study cases.
Let M be the number of categories in the sequence S, ci be the category i, N(ci) be the

observed frequency of the category ci, Pri the probability of occurs of the category ci, then the
expected frequency Ei of the category ci is Ei=P(S)Pri, the T (chi-square value) can be calculated as
follows:

T=


K

1i i

2
ii

E
)E)c(N(

…(26)

Assuming that T distributed according to chi-square distribution by =M-1 freedom
degree by  as significance level (as usual =0.05%), which it has T0 as a pass mark. If TT0
then the hypothesis accepted and the sequence pass the test, else we reject the hypothesis and
the sequence fails to pass the test, this mean that T not distributed according to chi-square
distribution.

In order to test our results we have to suggest an example suitable to our three studied
cases. Let n=3, r1=7, r2=9 and r3=11. P(S)= 132844159, Ei=66422079.5.

In this test =0.05%, with =2(Maxl-1) freedom degrees, Ej=(P(S)-j+3)/2j+2 P(S)/ 2j+2,
where j is the length of run (gap or block), and maxl=27 is the maximum length.
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Note: We will apply this test and auto correlation test on 3-LKG only since the applications of
these test on other cases studies are same.

For the 3-LKG, Table (4) shows the results of frequencies of run taken from equation
(26).

Table (4) Run frequencies using equation (15)
j 1 2 3 4 5 6 7 8 9

)a(Nj

S
16597328 8298664 4149332 2074666 1037333 518666 259461 129731 64665

Ej 16605520 8302760 4151380 2075690 1037845 518923 259461 129731 64865
j 10 11 12 13 14 15 16 17 18

)a(Nj

S
32433 16216 8108 4054 2027 1013 507 253 127

Ej 32433 16216 8108 4054 4054 1013 507 253 127
j 19 20 21 22 23 24 25 26 27

)a(Nj

S
63 32 16 8 4 2 1 0 1

Ej 63 32 16 8 4 2 1 0 1
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=4.04+2.02+1.01+0.505+0.251+0.127+0++0=7.953.
T=7.953<T0= 40.1, then S generated from 3-LKG passes this test.

Runs Test
The run test counts the number of runs of ones (blocks) and runs of zeros (gaps) for

each possible run length. For random data there should be an equal number of blocks and
gaps. The expected number of blocks (gaps) of length i is:

ei= 1i2

2
2

1in






…(28)

A chi-squared test is performed on the bit stream to test for the goodness-of-fit of the
number of blocks and gaps to this distribution. The chi-squared statistic is calculated as:
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…(29)

Where Bi is the number of blocks of length i, Gi is the number of gaps of length i, and 
denotes the summation over all possible run k of length i such that ei5. This is compared with
2k-2 degree of freedom.

8. Evaluation the results
8.1 Basic Evaluation

We can define the estimation process of the basic efficiency using the four basic
efficiency criterions by the Basic evaluation. In this section we will evaluate the three study
cases in two ways; theoretically and practically, we assume that these two ways must be
identical. The evaluation process in this paper is relative evaluation between the three study
cases but not absolute.
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In order to obtain fair evaluation we assume having three relatively prime MLFSR’s
with length r1, r2 and r3, combined with each other by combining function of each case study.

8.2 Theoretical Evaluation
The evaluation process in this subsection is done by theoretical estimation. Let SL, SP

and SB be the sequences generated from the linear, product and Brüer systems respectively.
The evaluation process have been done by the following aspects:
Three sequences will have the same period, s.t.

P(S)=


3

1i
i )S(P .

The product system has the largest linear complexity, s.t.
LC(SP) > LC(SB) > LC(SL).

The linear andBrüer systems will produce good statistical random sequences since the
given balance string of bits, while the sequence generates from the product system will fail to
pass the randomness tests.

The linear system has the largest correlation immunity since it has 0.5 correlation
probability for all its combined LFSR’s. But that is not true for the product andBrüer systems
because of their high non-linearity order.
CI(SL) > CI(SP) = CI(SB).

The decision is that, the Brüer system will be the best of the other two systems if the
weak point of correlation can be manipulated.

8.3 Practical Evaluation
The KG can be evaluated practically if it passes (or not) some successful value, this has

been done by using weight level value for each efficiency criterion. These weights can be
estimated according to cryptanalysis or attack means done on KG’s.

For instance, we may suggest to use the passing value 51%, giving the following weights
for each criterion; randomness (WR=50%), periodicity (WP=10%), linear complexity (WLC=25%)
and correlation immunity (WCI=15%). Table (5) shows the results of practical evaluation for the
three study cases using four efficiency criterions.

Table (5) The results of practical evaluation for the three study cases
weight levelsStudy Cases
WR% WP% WLC% WCI%

Results of
evaluation

Linear system 50 10 0 15 75%
Product system 0 10 25 0 35%
Brüer system 50 10 20 10 90%

Notice that Brüer system is the best between other two systems since it gets 90% as
pass value.
Example(5): (basic statistical tests)

Consider the (non-random) sequence s of length n = 160 obtained by replicating the
following sequence four times: 11100 01100 01000 10100 11101 11100 10010 01001.
Frequency test: n0=84, n1=76, and the value of the statistic X1 is 0.4.
Autocorrelation test: If =3, n0(3)=80 and n1(3)=77. The value of the statistic X5 is 0.115.
Runs test: Here E1=20.25, E2=10.0625, E3=5, and k=3. There are 25, 4, 5 blocks of lengths 1, 2, 3,
respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respectively. The value of the statistic X4 is
31.7913.
For a significance level of =0.05, the threshold values for X1, X2, X3, X4, and X5 are 3.8415,
7.8415, 7.8415, 9.4877, and 0.115, respectively.
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9. Conclusions
The following are some points concluded from this paper:

1- In literature survey the linear and Brüer cryptosystems are proved generates good randomness  sequences
statistically, while in this paper we prove that these cryptosystems generates really good random sequences
deterministically.

2 - Golomb proves that the LFSR generates random sequence deterministically. In this paper we notice that
the theoretical and the practical evaluation which have been done in the three studies cases are
identical to each other.
3 - Although the linear system passes the theoretical and the practical evaluation, we don’t recommend
using it as cryptosystems, because the weakness of its linear complexity.
4 - New efficient criterions may be discovered for KG. These new criterions may depend or not on
earlier known criterions since these criterions appeared by the developing of cryptanalysis and design
which may be applied on KG’s.
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