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SOLUTION OF THE ELECTROMECHANICAL
MACHINING PROBLEM USING THE COLLOCATION
METHOD BASED ON BERNSTEIN POLYNOMIALS

Fadhel Subhi Fadheli’ Sinan Hatif

ABSTRACT

In this paper, we have solved the electrochemical machining problem (ECM)
by using the collocation method based on Bernstein polynomials.

This paper is divided into three parts, in the first part we introduce a simple
overview about the two-dimensional ECM problem (in polar coordinate system),
while in the second part we consider the Bernstein polynomials (including its
definition and properties). Finally, the third part consists of evaluating the
approximate solution of the mathematical modeling related to the ECM problem.

1- INTRODUCTION

As an alternative to definition to mechanical machining problem, a piece of
metal can sometimes be shaped by using it as an anode in electrolytic cell with an
appropriately shaped cathode. This represent a moving boundary value problem,
because the anode surface changing with time. The anode is moved towards the
cathode, or vice versa, at a constant velocity and products of the erosion of the anode
are swept a way by the electrolyte, which is pumped through the space between the
electrodes, [3].

2- THE MATHEMATICAL FORMU-LATION OF THE PROBLEM [3]

The two-dimensional ECM problem will be considered for two electrodes (as
shown in Fig.1). The space between the electrodes is filled by an appropriate
electrolyte. A voltage is placed across the electrode and these causes are removal of
material from the anode. We will solve the ECM problem of an anode surrounded by
circular cathode, the conductivity in the gap between the electrodes is considered
constant. This problem is formally identical to one-phase Stefan problem with zero
heat capacity.
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Fig.1: Basis configuration of ECM problem.
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Referring to Fig.2, suppose that the anode is the shrinkage region A(t), with
moving boundary TI'; and I'y denote the initial anode surface at t = 0. The region inside
the cathode surface C is denoted by D and the region occupied by the electrolyte by
D;, so that D includes A(t) and D;. Also, it is convenient to define the moving

boundary T, V t>0, by [3]:

={r,0):r=1,0<6<2n}

An approximation model for the process is given by:

V2H =0, IND oo )
¢=0 on C
o } ........................................... 3)
®=g on Iy
Z—T_MV(ba ON i, 4)

where D is defined as:
D ={(r, 0, t), a<r<s(0,t), 0<0<2m, O<t<T}

C

Fig.2: Moving boundary value problem Annular ECM problem.

It should be noted that the annular electrochemical machining boundary
conditions (3) are based on the assumption that the effects of over potentials could be

ignored.

The particular problem we treated in detail of circular cathode of radius ¢ with
anode inside it. We measure all lengths in units of ac, here o is a positive non-

dimensional constant.
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Then V (the gradient operator of the non-dimensional length) and V are

connected by V =z. We define further non-dimensional potential by ¢ =go, such

ac
that egs.(2) and (3) becomes:
V2 =0, in the electrolyte .........ccccooveuen.n. (5)

with boundary conditions:

¢=0 if r=a on the cathode
¢=1 if r=s(6,t) on the anode

A non-dimensional time variable T = (Mg ac)t is defined and eq.(4) becomes:

dR

ﬁ: (I) .............................................. (7)
anode

where
2 2

Lz 0 10 10

= +t——t5—
a? ror r? o9

The characterization of potential equation is straightforward. However, the
free boundary condition on the anode must be transformed into an expression in terms

of the anode speed along each ray. Rewriting Vo and %—F: in polar coordinated

system:
EEONERY
or'ree) \dt dt
where r = s(0, t) on the anode and this implies @:ﬂ and 1% = rd—e. Now
or dt r oo dt
dr_2s, 5o
dt  or 00 dt
%, 010
o 00 r? 00
A ®)
o 90 2 00

0 0

It is convenient to replace % by e Since the tangential derivative vanishes
r

on the anode, then:

(@ﬂ+@@j
or 00 20 00

r=s(0,t)

Then:

% _ 50
30 o0 ar
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Now, substituting eq.(9) in eq.(8), so the gradient condition on the anode
surface leads to:

@:§+%1[&%}

o ot 00s2

Hence:

00 or

os 09, 1 050509

ot or  s2 0000 ar

%, (@T@
or so0) or

Therefore:

2
o 1+(1@j 2
ot S 00 or

or equivalently:

0s
% o # =£(0,1) v (10)
' 1+(589)
So, the final mathematical model of the problem is given by:
V2 =0 inthe electrolyte...........cco......... (11)
¢ =0 onthe cathode, wherer=a............. (12)
¢ =1 on the anode, where r=s(0,t) ............ (13)
¢r=1(0, t) onthe anode...........coovvvrvrnnnne (14)
where:
s
f(6,t)= —L
1+ (185j
S 00

3- BERNESTIEN POLYNOMIAL [1, 2]

Here, we would like to give the definition and some properties of Bernestien
polynomials that are needed in this paper.

Definition (3.1):
The Bernstein polynomials of degree n are defined by:
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ny . r
Bin(t) = (ijt'(l -t

fori=0,1, ..., n; where:

m i i!(nnii)!

We usually set Bi, =0 ifi<0ori>n. Also:

Bin()20, 3By (0 =1
i=0

. . . - n
These polynomials are quite easy to write down the coefficients [

vol. 20 (4) 2009

j can be
i

obtained from Pascal's triangle; the exponents on the t term increase by one as i
increase; and the exponents on the (1 — t) decrease by one as i increase. In the simple

cases, we

0<t<1:

1- The Bernestien polynomials of degree 1 are:
Boi(t)=1-t
Bii(t) =t

2- The Bernestien polynomials of degree 2 are:

Boa(t) = (1 - t)?
Bia(t) =2t(1 - 1)
Ba(t) = 12
3- The Bernstein polynomials of degree 3 are:
Boa() = (L - 1)°
Bya(t) = 3t(1 — t)°
B2a(t) = 3t3(1 - t)
Baa(t) =3

Remark (3.2), [2]:

for

A relationship between Bernstein basis and functions power basis functions
may be given next. Any Bernestien polynomial of degree n can be written in terms of

the power basis, as follows:

oo~ 507 1)
! i )Lk
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Remark (3.3), [1]:

The derivative of Bernestien polynomials may be also given recursively,
which may be derived using the definition of Bernestien polynomials, which is for 0 <
k<n:

d
aBk,n (1) =n(Bi-1n-12(t) — Bn-a(t))
4- THE APPROXIMATE SOLUTION OF THE ECM PROBLEM USING THE
COLLOCATION METHOD BASED ON BERNESTIEN POLYNOMIALS

The collocation method is one of the most common methods used to
approximate the solution of the differential, integral equations, and partial differential
equations. Here, we use the collocation method based on Bernestien polynomials to
solve the ECM problem.

Now, in order to use the collocation method, we approximate the solution ¢(r,
0, t) as follows:

o(r, 6, t) = y(r, 6, t) + w(r, 6, t)

where y(r, 0, t) is any function which satisfies the non-homogeneous boundary
conditions and w(r,0,t) any function satisfies the homogeneous boundary conditions.

One of the choices for w(r, 0, t) which fit our needs is modified here by using
the Bernestien polynomials, as follows:

w(r, 6, t) = (r—a)(r—s(r, 0, t))2 iiaijBiyn (r)Bj’n )

i=0 j=1

where:

ij(r, ) = Bin(r)Bjn(6),1=0,1,2;j=1,2

which are chosen as Bernestien basis functions, hence:

w(r, 0, t) = (r — a)(r — 5(0, 1))* [a01(Bo.1(r) Bo.1(6)) + a02(Bo.2(r)Bo.2(6)) +
211(B1,1(1)B1.1(6)) + 212(B1,2(r) B1,2(6)) + 222(B2,2(1)B222(6))]

where a;;, 1 =0, 1, 2; j = 1, 2 are constants to be determined. For simplicity, rewrite
this equation as follows:

o1 = a1, Qo2 = A2, &11 =as, A1z = a4 and ax = as
Therefore;

w(r, 0, t) = (r —a)(r — s(0, 1))’ [a1(Bo.1(r) Bo,1(6)) +az(Bo.2(r)Bo2(0))+
a3(B1,1(1)B1,1(0)) tau(By,2(r)B1,2(6)) + as(B2.2(1)B2.2(0))]
In addition, for the non-homogeneous boundary conditions which satisfies ¢ =

1 on the anode, and by using the mathematical inspection, we can take wy(r, 0, t) to be
as follows:
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W(r0.0) = -a (r—a)(r—s(6,t)) SC 1
s(6,t)—a s(6,t)—a (§(9 t)]Z s(0,t)-a
1+ ’
s(6,1)
Where §(6,t) = os0.9 and 5(6,t) = M which is easily checked that when r =

s(0, t), then y(r, 6, t) = 1. Now, the Bernestien polynomials of degree 1 are:
Boa(r)=1-1r,Bo1(0)=1-9,

B11(r)=r,B11(6) =06

and the Bernestien polynomials of degree 2 are:

Bo2(r) = (1 - r)?, Bo2(0) = (1 - 0)%,

B1o(r) =2r(1 —r), B12(0) = 26(1 -6),

B2.(r) = 1%, B, 2(0) = 67

Therefore, inserting these polynomials in the definition of w(r, 6, t), we get:

w(r, 0, t) = (r — a)(r — (6, t))’[a1(1 - 1)
(1 - 0) + ax(1 —1r)%(1 — 0)* + asro + a4 (2r(1 — r)?0(1 — 0) + asr’6?]

= (r—a)(r—s(®, t)’[as(1 — r — 6 + r0) + ax(1 —2r — 20 + r* + 0% + 4r0 — 2r°0 —
2r0% + 1°0%) + agr0 + ay(4r0 — 4r6° — 4r°0 + 4r20%) + asr°0’]

Hence:

;ﬂ =2(r—a)(r—s(0, t))[ar(1 —r — 0 + r0) + ay(1 —2r — 26 + r* + 6% + 4r6 — 2’0 —

r
2r0% + r°0%) + agro + as(4ro — 4ro* — 4r%0 + 4r%0%) + asr’6?] + (r — 5(6, 1))? [ax(1
—r—0+10) +ay(l —2r — 20 + r* + 0% + 4r0 — 2r°0 — 2r0® + r°0°) + a;ro +
as(4ro — 4ro — 4r’0 + 4r°0%) + asr’0?] + (r — a)(r — 5(0, t))? [ay(~1 + 0) + ap(-2
+2r + 40 — 4r0 — 202 + 2r07) + a0 + a4(40 — 46 — 8r0 + 8r0?) + 2asr6?]

and also:

2
ZT\;V =2(r—a)[ai(l —r— 0 +rf) + ay(1 —2r — 20 + r* + 6% + 4r — 2r°0 — 2r6* + r’6°)
+a3r0 + as(4r0 — 4r0% — 4r°0 + 4r°0°) + asr’0°] + 2(r — (6, t))[ar(l —r — 0 +
r0) + ax(1 —2r — 20 + r> + 0% + 4r0 — 2r°0 — 2r0° + r’0?) + asrd + as(4ro — 4ro?
— 4r%0 + 4r°0%) + asr?0%] + 2(r — a)(r — s(6, 1)) [a1(~1 + 6) + ap(—2 + 2r — 4r6 —
20° + 40 + 2r0°) + a0 + a,(46 — 467 — 8ro + 8ro%) + 2asr6%] + 2(r — s(6,
t))[ar(1 —r— 0 + r0) + ap(1 —2r — 20 + 1’ + 62 + 4r — 2r°0 — 2r6* + r°0%) +
asrB + as(4ro — 4ro? — 4r°0 + 4r’6%) + asr?6?] + (r — (0, t))*[ar(~1 + 0) + ax(—2
+2r + 40 — 4r0 — 26% + 2r6%) + a3 + a4(40 — 467 — 8rf + 8r?) + 2asr6?] + 2(r
—a)(r—s(0, ) [ar(~1 + B) + ay(~2 + 2r + 40— 4r — 267 + 2r6?) + az0 + a4(40
— 40— 8r0 + 8ro?) + 2asr6?] + (r — s(0, 1))? [a1(~1 + 0) + a(~2 + 2r + 40 —
4r0 — 20° + 2r0°) + as0 + as(40 — 46 — 8r0 + 8r0%) + 2asrH?] + (r — a)(r — s(o,
£))? [a2(2 — 46 + 26%) + a,(—86 + 86?) + 2as6?]
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Also, the derivatives of w with respect to 0 are:

65(6 t) [a

= 2(r—a)(r—s(6, t) = [a1(1 — 1 — 0 +r0) + ax(1 —2r — 20 + 1> + 6 + 4rp —

2r’0 — 2r0° + r’0?) + a3r6 + ay(4ro — 4r6% — 4r%0 + 4r*6%) + asr’0°] + (r—a)(r —
S(0, t))’[as(— 1 + 1) + ax(— 2 + 20 + 4r — 2r> — 4r0 + 2r°0) + agr + as(4r — 8r0 —
4r% + 8r°0) + 2asr°0]

2
_ _2(r—a)(r—s(0, ) 2 Sée 9

[a1(1 —r— 0 +r60) + ay(1 —2r — 20 + r* + 6% +
4r0 — 2r%0 — 2r0° + r°02) + agr + as(4r0 — 4r0° — 4r°0 + 4r°0°) + asr’6?] + 2(r
_a) (as(ee t)] [a1(1 — F — 0 + 1) + ay(L —2r — 20 + 1> + 02 + 4r0 — 2120 —

2r07 + 170°) + agr0 + a4(4r0 — 4ro” — 4r°0 + 4r°0%) + asr’6?] — 2(r — a)(r — s(0,
) 0s(9,1) [ay(— 1 +r) + ay(— 2 + 20 + 4r — 2r* — 4r0 + 2r°0) + agr + a(4r —

8r0 — 4r% + 8r0) + 2asr*0] — 2(r — a)(r — s)( j[( 1+ral+ay(—-2+20+4r

— 2% — Ar + 2r°0 + agr + ay(4r — 8r0 — 4r° + + 8r°0) + as(2r°0) + (r — a)(r -
s(0, 1))[a2(2 — 4r + 2r?) + ay(— 8r + 8r%) + 2asr?]

In addition, for the function y(r, 0, t) which satisfies v = 1 on the anode, in

which v is given by:

3 -a (r—a)(r—s(e,t)) s@t) 1
v(roL) = (6 t)—a s(6,t)—a 5(0,1) 2 s(0,t)-a
1+ '
[s(e,t)j
where $(0,t) = o50.9) and 5(0,t) = 50,9
ot 00
Now:
oy _ 1 N (r—a)+(r—s(6,t)) so@) 1
o s(0,t)-a s(0,t)—a so.0) sOb-a
1+ :
(S(O,t)J ]
%y _{ 2 } o) 1
2 _ _ 2 _
or s(6,t)—a 1+(S(e’t)j s(6,t)—a
s(6,1) ]
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S -
HS) }5_2(5 (-6
oy _ A(r-a)s | ((r—a)(r—s)j S S g2 - } .

00 (s-a)? s—a

§ 1 {(r—a)[(s—a)(—g)—(r—s)§]}

) (5—a)?

—\2
S
Zy =(r-2a) {(S_a)g_zgz} + ((r—a)—(r—s)] {“()

S—a

2 f= 2 2= =2
i B
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MlEH s

S .- (s a)(-S)—(r-s)s $ 1

(s—a) (s—a) “@2 s-a

(-2 -2 (-5~ («_aysas-a)

[o-a2] o]

(s—a)z((r—s)?—gz—(r—s)§(2<s—a>§>} (r—a)[(s-a)(=5)—(r-9)(3)]
[(S_a)zf (s—a)?

{1 (§T}— 25 5552
+ 2| [§-8=2
S s g2 5
{ 272 +(s—a)2
L2 ”
S

From the chemical and physical interpretation of the problem, and for the

approximate solution, we propose the moving boundary s(6, t) of this problem
requires that the conditions must be satisfied:

1. When 0 increases, then s(0, t) increases.
2. When t increases, then s(6, t) decreases.
3. When t =0, then s(0, t) = so(0) is the initial moving boundary.

The following definition of s(6, t) may be used, which satisfies the above three
conditions:

50, t) = 50(0) — (as + ar(m — 0)’te?' 0<0<n

and hence:
o 0S(0,1) = - 8%s(6,t)
5(0,t) = 0 5(0,t) = 2o
= . 2%(60,1) o5(0.1)
5(0,t) = i , $(0,1) =———= -
_ 2

5(0.1) = 25(6,t) t) 5(0.1)= 0 5(26 1)

20 o0
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where so(0) = 1, and the initial moving boundary:
5(0, t) = 5o(0) — (arte3t + ate3t (n — 0)?)
5(0,1) = —((aste™")(2(n -0))(-1)
= 23,1633 (T = 0) oo (15)
5(0,1) =—2a,te®3Y o (16)
§(0,1) =—ay(aste?! + e3t) + ay((aste?t + e33)(n-0)?) (17)
5(0,1) = —2a((aste®! + ¢33 (n - 0))...... (18)

§(0,1) = 2ay(aste®! + e®3). (19)

vol. 20 (4) 2009

Now, substitute the derivatives for ., y, and yee, We get an equation with
eight constants to be determined, namely aj, a,, ..., as. Therefore, we need for eight

points in the region of definition say:

0, 0), (n, 0), (27, 0), (0, 0.5), (, 0.5), (2, 0.5), (0, 1) and (r, 1)

Hence, we get the a linear system of algebraic equations Aa = B, and upon solving
this linear system using Mathcad computer softer, we get the following results:

a1 = 1.25x107°, a, = 2.54233,

as = 1.45x10™ a, = 3.456x107*,
as = 1.43, ag = 0.0251, a; = 1.343,
ag = 0.6453

Also, the graph of the moving boundary is given in Fig.3 and the solution of

the ECM problem at time t = 0.1 is given in Fig.4:

3.00 —
i —@— o1

—— t=02
250 — —— t=03

200 —

Moving Boundary

150 —

1.00 —

0.00 2.00 4.00 6.00
]

Fig.3: The moving boundary for different time step.
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Fig.4: Solution of the ECM problem at
timet=0.1.

CONCLUSION

From Fig.3, one can see the accuracy and validity of the obtained results, since
the anode is reduced or decreased with increasing time.
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