J. Of College Of Education For Women vol. 24 (3) 2013

New Commands to Improve the Monitor for the
ELWE Microcomputer

Dr. Afaf Badie Jamil
Department of Computer Science- College of Education for Women
Baghdad University

Abstract

The base of the ELWE MPF-1 microcomputer is the Z80 microprocessor. The
780 programs are written in assembly language. The main advantage of assembly
language is that: it is much faster to code and the mnemonics makes it easier for the
user to remember the instruction.

The purpose of this paper is to improve the monitor process for didactic
microcomputer ELWE MPF-1 by appending new powerful commands (MOVE,
FILL, SEARCH and COMPARE) to the existing monitor to make it more useful
and flexible. 8085 assembly language is used to execute this program. The letters
used for abbreviation: M for MOVE, F for FILL, S for SEARCH and C for
COMPARE.

Ao g8 8L ELWE J G pal) Gt Bagaa & lay

S8l Cailde o
) ol g Al R

LAY
el A3l 4y 56 780 el 1 o) .Z80 gliaal) 58 ELWE MPF-1 i sasa 58 5 Siall Gl)
) S sl Jgl Lgilea) puaitiall 55 5800 AU de s o aaenll Ladl 4pulu) 52004l
< Slag) Zdlaly G s ELWE i sie oS 5 0Slally Gl &) (il pall st ga Caanll 138 (e Caagl)
alead @lli g 5 g sall La¥) cl 5l (MOVE, FILL, SEARCH, COMPARE) (s a2 48
D M i deadin RSP bl 138 2l 8085 amenil) da) Caeddiul A yas 558 By
.COMPARE U C —all s SEARCH U S < yall s FILL M F <all s MOVE

-929-

J. Of College Of Education For Women vol. 24 (3) 2013

1. Introduction

The Z80 is a CPU - central processing unit - having the ability to fetch and
execute machine language instructions. These instructions, in turn, can specify
simple operations such as transferring an item of data between the outside world
and one of the Z80's internal registers, or performing simple computational
operations (e.g.addition). The ELWE MPF-1 is a COMPUTER - it includes a Z80
CPU, plus a memory system, plus an input-output system [6].

1.1 Z80 CPU Architecture
A. The Z80 is a pure 8-bit microprocessor, which means that its internal registers
and data paths (as well as its external data bus) are 8 bits wide [5][8][10].

1. This means that basic arithmetic operations are performed on 8-bit
operands, which can represent values in the range of 0..255 (unsigned) or -
128 .. 127 (signed).

2. When it is desired to work on numbers having a larger range of values, it is
possible to combine two 8-bit operands to yield a 16-bit value (range
0..65535 (unsigned) or -32768..32767 (signed) or even to combine four to
yield a 32-bit value. However, the internal arithmetic is done 8-bits at a
time - thus adding two 16-bit numbers requires two steps, one for each half
of the operands.

3. Many modern CPU's are 32-bit processors, which means their internal
data paths and registers are 32 bits wide (though some high-end processors
are 64-bit). These machines typically allow the user the option of working
with 8, 16, or 32 bit operands, so less storage can be used when a smaller
range of values is all that is needed. (e.g. character strings are typically
represented by using 8 bits per character).

4. However, 8-bit CPU's are still manufactured and used extensively in
embedded systems - e.g. home appliances - where the power of a 16-bit or
32-bit CPU is not needed and does not warrant the extra cost and wiring
complexity. (The latter is a key issue - a 32-bit system needs four times as
many data lines between the CPU and memory as 8-bit system needs, which
add to manufacturing complexity and cost. It is probable that a typical home
contains more 8-bit CPU's than anything else!)

B. The Z80 CPU connects to the outside world through two BUSES plus a set of
control lines Figure (1),[9].

-930-

J. Of College Of Education For Women vol. 24 (3) 2013

4 Shil vl

FE0 Lo
CPU Memary Devless

P— Lip b S R M R

Agred SRS
[T
It
rwf;b.

=R el vt el |

Figure (1): Z80 microprocessor 8-bit Data and 16-bit Addresses

1. The 8-bit DATA BUS can be used to transfer a byte of information
between the CPU and the outside world.

2. The 16-bit ADDRESS BUS is used to specify exactly where the data is to be
transferred from or to. With 16-bits, it is possible to specify 65536 (64K)
unique addresses - thus the Z80 can connect to up to 64K of memory.

3. Control lines are used to specify what type of operation is to be
performed - e.g. read (transfer of data to the Z80 from some external
source) or write (transfer of data from the Z80 to some external destination).

4. On the MFP-1, these buses are connected to on-board memory chips that
provide 8K bytes of read only memory (ROM) and 4K bytes of read- write
memory (RAM), plus various IO devices (keyboard, display, etc.).

C. The Z80 is basically a one-accumulator machine, which means that for most
arithmetic and logical operations the A register (the accumulator) contains
one of the source operands and receives the result of the operation. This
contrasts with many newer computers, which have a number of general
registers which are equally capable of participation in arithmetic and logical
operations.

D. The Z80 has a total of 16 8-bit registers and 4 16-bit registers [5][7][9] Figure

(2).

thogracn s idiot g S
Fe | slz -[u]-[r[nc]
5P |
Cevera ReREisE Al S ealees
A | Flags | &] F |
8 | ¢ | B_|__¢<__|
p | e | o | E]
ol WO U]
Nty S I R lardaae ol
I | I -
¥ | e

Figure (2): Z80 Processor Registers

-931-

J. Of College Of Education For Women vol. 24 (3) 2013

In Figure (2), the following are found:-
1. The 16-bit PC contains the address of the next instruction to be executed.
2. The 16-bit SP is a stack pointer used to maintain a hardware stack in memory
- it contains the address of the memory cell holding the top item on the stack.

3. The 8-bit A register is the accumulator, and participates in most arithmetic

and logical operations.

4. The 8-bit registers B, C, D and E provide temporary storage for intermediate
results of operations, and can also be paired up (BC, DE) to form 16-bit
registers that can be used as pointers to memory cells.

5. The 8-bit registers H and L are seldom used as 8-bit registers. More often
they are paired to form a 16-bit register that is used to point to a memory
location. Many memory-reference instructions require that the address of
the item to be fetched or stored be in HL.

6. The processor also contains two index registers (IX and IY) that can be used
to address data in memory.

2. New Commands
a- MOVE Command: is for transfer a block of data from a specific area
addressed by addrl and addr2 of memory to another area addressed by
addr3. The syntax of it:
<M>= addr1 addr2 addr3
The MOVE command can transfer data if source and destination areas of
memory are overlapping as shown in Figure 3:

e sdor

RCTTE [T B

sl pakad 1 \dz5d 0 azdd
FLIF RS el 3 il —
ol kot
mesLf dord tmadl adsr
B T T
dzzL 3 SIue
[= e 3

end] oods

zlamy adel

Figure (3): Cases of Overlapping
a- Ordinary transfer.
b- Overlap (move up).
c- Overlap (move down).

-932-

J. Of College Of Education For Women vol. 24 (3) 2013

-~ \\\ <
{f startzend -
.

- -
- -
-~ T
e
‘l\>
- N |-
& - .

<! z__,/ e = o .,
larglhe— cusl. - slarl |' z\x\nmrr'rlnﬂ o A 1 3
__. z__/ ——"
-
-
o e
dool = cngth+dest | | (destadc- = (sta= acer) |\
. -._zf -, *
o o
{dess j<—(en7) L-_ {ﬂ_ startdes. /}ﬁ"- slall=— slai+1 |
e
3 R _ |-
/’ ., . E
P ey dzst < deat 11 |
Iz 1 E“—’l ¢ ular and _/ i:- ralurn :) |

"

dect+ doot 1
|

Figure (4): MOVE Command Subprogram Flowchart

Examplel:

The following state of memory is given:
F800 7D F900 00

F801 91 Fo01 00

F802 6F F902 00

F803 7C F903 00

F804 98 Fo04 00

After execution of the MOVE command:
<M>=F800 F804 FO00 the content of memory will be changed:

F800 7D F900 7D
F801 91 Fo901 91

F802 6F F902 6F
F803 7C Fo03 7C
F804 98 F904 98

-933-

J. Of College Of Education For Women vol. 24 (3) 2013

You cannot execute this program if it contains JUMP instruction because all
addresses will be changed, except if it contains JUMP RELATIVE instruction
instead of JUMP. All the time end address must be greater than start address
otherwise the program is terminated.

b- FILL Command: is for storing a word (two bytes) of data in a specified area of
memory, addressed by addr1 and addr2. its syntax of is:

<F>=addrl addr2 word

Example2:
The following state of memory is given:

F800 00
F801 00
F802 00
F803 00
F804 00

After execution of the FILL command:
<F>=F800 F804 FF00 the content of memory will be changed:

F800 FF
F801 00
F802 FF
F803 00
F804 FF

-934-

J. Of College Of Education For Women vol. 24 (3) 2013

_— __"-_
r oslal -
— -~

e

CIUNTEN - COUNZar -~

countar<- and - g2art

L

start<— first oyte of data

start =dd-. <- stad adczr. + 7
&
PN
-~ s es
< rouwer? =

. -
| 1]

stzd - s=onnd bete o d=la

¥

ata~ ader < st=rt andr |1

cour larsi—= o lar - 1

I
e T
nz _},_./ T,
e couna) s
'_\ _/"}
~ Ea
yes Ty
.-"_'_l -
07 rewm
- -~

-

Figure (5): FILL Command Subprogram Flowchart

c- SEARCH Command: is used to find all contents of specified area of memory
addressed by addrl and addr2, contents of these area must be equal to specified
bytel of word masked by byte2. its syntax of is:

<S>=addr] addr2 word

Example3:
The following state of memory is given:

FCO00
FCO1
FCO02
FCO03
FCO04

91
58
91
58
FB

After execution of the SEARCH command:

<S>=F800 F804 FF04

-935-

J. Of College Of Education For Women vol. 24 (3) 2013

FC00 91
FCOl 58
FC02 91
FC03 58
FC04 FB*

The operation of searching is done like this:

1111 1111 FF
XOR 0000 0100 XOR 04
1111 1011 FB
1001 0001 91
AND 11111011 AND FB
1001 0001 91

At the beginning XOR is made between FF masking byte and 04 searching byte
the result FB is using for comparing with bytes from the specified area of memory
by making AND operation. If the result is different from zero such a location of
memory will not be displayed.

The result 91 is different than zero the address FCO0 and contents of this
location will not be displayed. The rest is done in similar way. The address FC04
and contents of this location will be displayed as shown below:

1111 1111 FF
XOR 0000 0100 XOR 04
1111 1011 FB
1111 1011 FB
AND 11111011 AND FB
0000 0000 00

-936-

J. Of College Of Education For Women vol. 24 (3) 2013

I T gat ™

—_—

| caLrzer<- énd - start |

I

| Izt eamp smers of byel |

lompurary egs. < mamkoc RORsioL)
s
1=mpcrary eqs.«<--bytel aXDi=mporary r2gs.
A

e
dizplay zan addr, H‘l_ = ::}E-:-_r.:'}cL R

- L

et =
Z splay space Loanbar-Sounls - *

sy (el v, glart addr. - star ade-. +*

T - ‘

displzy spar=

— I

Capay

= -~

T e
- . e e
copreszed T gH

Figure (6): SEARCH Command Subprogram Flowchart
d- COMPARE Command: is for comparing two areas of memory, specified by
addrl and addr2 to the addr3, and finding if the contents of these areas are equal or

not. its syntax is:

<C>=addrl addr2 addr3

Example4:

The following state of memory is given:
F800 FF F900 00

F801 C9 Fo01 00

F802 CF F902 00

F803 00 F903 00

-937-

J. Of College Of Education For Women vol. 24 (3) 2013

F804 F9 Fo904 F9
After execution of the COMPARE command:

<C>=F800 F804 F900

The result is:

F800 FF#F900 00 % press any key to continue
F801 C9#F901 00 % press any key to continue
F802 CF#F902 00 % press any key to continue
F803 00=F903 00 % press any key to continue
F804 F9=F904 F9 %

.
soLITervi— frd - star addr |
vl COHE |
1.
#ate--#lat o | |

dest - degt 1 | |

creanler = cour er -1 |
:
PR

: : , -
7 realal Ce—— e

=8
-
'\.\.

| 4 splay stamt zddr |
T-

displon pae:

| dizp 3y (slar sddr) |
.__:lr___ I
T BN Tl 0K
T !
dinploy — | | 4 aplay # |
1
4 nplow dess aodr
T

drzp ay spaLs

| drsplee jdez=l. auc-] |
L

hispoy spae

d3play v

Figure (7): Flowchart of COMPARE Command

-938-

J. Of College Of Education For Women vol. 24 (3) 2013

3. Main loop of monitor program [1][2][3][4]

These two flowcharts below explain the Z80 main loop of ELWE MONITOR
program before and after modification.

e e T sl T
sp=gyssiack sp=syssack
sadil fom pan kay wait for irput key

wreale cle cwal e Lo

ERECUE ZIEAr raLting Lo
cloar P sploy

Lear Le d spay

1

| A
auac e Revens A g L \ -,
s |
l \ o \\' L —-I awanLte WMOAT carrma) —
= RS 1

/ ;;
s = L F
A L ,} exezute FI_L cammend I—

< W x| exacata mamory display rauirs | irap 1A rain
o o e ul FcArnT
L .
l S execLte ZZARCIH
T A voinnmiard
<' 1 > swarlra rac starc aplay crdna — I
h s = ol W Thks
\"""f A L LI | B et =
I — T camrad
. R o
K = g B e T
o - myacre 0 culine al el 1
AR |
|

execibe ole beyse

Figure (8): a- Old Keyexe Subroutine Flowchart.
b- New Keyexe Subroutine Flowchart.

If we compare the old and the new ELWE monitor subroutine called KEYEXE it
is easy to find the difference: the new letters C,K,E, and V are connected with the
new commands for the ELWE microcomputer. If processor has recognized one of
these letters a JUMP to the proper subprogram is made otherwise the execution of
one of old subprogram started.

-939-

J. Of College Of Education For Women vol. 24 (3) 2013

The function of the KEYEXE subroutine is to check the pressed key and then

execute the proper subprogram according to the letter and finally return to main
loop of ELWE program.

4. Connection of the new KEYEXE subroutine

The connection to the monitor is done by changing only two bytes of the main
loop of ELWE monitor program. The below flowchart explains this connection:

sp<-—- sysstack sp<- sysstack

L L

call scan call scan
L L

push AF push AF

caIIJ;rbf calltrbf

pDF;J;'nF pDF;JT&F
! v

call KEYEXE call new KEYEXE
a S

Figure (9): Main Loop of ELWE Monitor Program
a-Before Modification
b-After Modification

The new KEYEXE contains both letters of new and old KEYEXE subroutine.

-940-

J. Of College Of Education For Women vol. 24 (3) 2013

5. Conclusions
These commands were selected for the implementation since these are useful to
use the notion By adding these new commands the monitoring problem will solved.

References
[1] Crane J., "Laboratory Experiments for Microprocessor System", Prentice Hall,
Englewood, 1980.
[2] MPF-IP Monitor program source listing, Multitech Industrial Corp., 1983.
[3] MPF-IP User's Manual, Multitech Industrial Corp., 1983.
[4] Philips I&E, Ei idhoven, "PMDS-II Debugger Manual, PMDA System
Reference Documentation", the Netherlands, 1985.
[5] Russel C. Bjork, "An Example of the Z80", 1998.
www.galia.fc.uaslp.mx
[6] Steve C., "Build Your Own Z80 Computer", Byte Books, 1981.
[7] Steve Ciareia, "Design Guide Lines and Application Notes", 1981.
[8] Thomas Scherrer, "Home of the Z80 CPU Family", 2011.
www.Z80.info
[9] The Z80 Microprocessor.mht, 1998.
www.penguicon.sourceforge.net
[10] Z80 Microprocessor Specifications eHow com.mht, 2011.
www.eHow.com

941-

