J. Of College Of Education For Women vol. 24 (2) 2013

Design and Implementation of New DES64X and DES128X on
32, 64 Bit Operating System Environments

Ammar H. Jasim
Department of computer Science /College of Science for women
University of Baghdad
E-mail: ammar_hussein_2004(@yahoo.com

Abstract

In this paper, a description of a design for new DES block cipher, namely DES64X
and DES128X. The goals of this design, a part of its security level, are large
implementation flexibility on various operating systems as well as high performances.
The high level structure is based on the principle of DES and Feistel schema, and
proposes the design of an efficient key-schedule algorithm which will output pseudo-
random sequences of sub keys.

The main goal is to reach the highest possible flexibility, in terms of round numbers,
key size, and block size. A comparison of the proposed systems on 32-bit, 64-bit
operating system, using 32-bit and 64-bit Java Virtual Machine (JVM), showed that the
latter has much better performance than the former.

Al i)l Bagan 48 pks 3,d g avacal
A Ve g P Jads aUaS ciliyy B

pely (e Jles
ary drala /lill o slall IS/Clunlall o gle ol

ammar_hussein_2004@yahoo.com : s s SIY) 1

waldliual)
) 8 o Lo (310 sl UL s Ba 315l St 2l el iamy 3 il 26 g 020
6 inea By) paanaa) 1) Ay I Calaatyl AU VYA bl Apulill il A5, 5l 5 A0 18 Sld Al
e o pracadll aiiul | Jladl ehaih) &icall LS okl dalail o 5 508 Saalaid g pa g et
Ol Al g tptlaal) Al pan Ba)) 4] Be i€ araial slie) aa Jied daa g Al CUL (005 300)) A

COAN s A : ali (e fa, SV Jsmasll b oasi Sl Cangl
WP ERE I PRI TR FE N X Gk
FRIERIREN

-572-

J. Of College Of Education For Women vol. 24 (2) 2013

1. Introduction

DES is one of the most popular block ciphers. It is a block cipher encrypting 64 bits
of data block with a 56-bit key size. The small key size and increased computing power
of modern computers make DES unsafe with exhaustive search attack. Therefore, a
cipher based on DES with a larger key size is necessary [1].

DES is used in many and varied crypto-based applications. It is used to protect the
secrecy of login passwords, E-mail messages, video transmission (such as pay-per-view
movies), stored data files, and internet distributed digital content, etc [2].

In this paper, the objective is to develop a block cipher where the key and block sizes are
significantly large. The proposed block cipher relies upon the encryption techniques of
confusion and diffusion.

Confusion is accomplished through substitution. Specially chosen sections of data
are substituted for corresponding sections from the original data. The choice of the
substituted data is based upon the key and the original plaintext. Diffusion is
accomplished through permutation. The data is permuted by rearranging the order of the
various sections. These permutations, like the substitutions, are based upon the key and
the original plaintext [3].

The substitutions and permutations are specified in the proposed system, by the DES
algorithm [4]. Chosen sections of the key and the data are manipulated mathematically
and then used as an input to a look-up table. These tables are called the S-boxes and the
P-boxes, for the substitution tables and the permutation tables. In software terms, these
look-up tables are realized as arrays of bytes. Usually the S-box and P-box are combined
so that the substitution and the following permutation for each round can be done with a
single operation. In order to calculate the inputs to the S-box and P-box arrays, portions
of the data are XORed with portions of the key. One of the 32, 64-bit halves of the
64,128-bit data and the 64,128-bit key are used. The S-box, P-box look-up tables, and
calculations, upon key and data which generate the inputs will constitute a single round of
feedback to the system.

The same process of S-box and P-box substitution and permutation is repeated
sixteen times, forming the sixteen rounds of the block cipher algorithm. There are also
initial and final permutations which occur before and after the sixteen rounds. These
initial and final permutations exist for historical reasons dealing with implementation on
hardware and do not improve the security of the algorithm. For this reason they are left
out of system implementations at capture time. They are, however, included in this
literature analysis as they are part of the technical definition of the proposed system.

2. Proposed Design Description

The design has two versions, 32-bit and 64-bit. The first one was designed for 32-bit
operating system and using 64-bit block cipher with 64-bit key, the other for 64-bit
operating system with same features as in the 32-bit, however, the key length equal to
128-hit.

2.1 DES64X
As illustrated in figure (1), the DES64X is a 16-time iteration of a round function
denoted by ROUNDG64, which is built as a Feistel schema [5].

-573-

J. Of College Of Education For Women vol. 24 (2) 2013

Formally, these functions take 64-bit X ¢,,, 64-bit round key rK g,, as input, and 64-bit
outputYq, . The encryption Cg,, of a 64-bit plaintext Py, is defined as:

Py = 1P(m,) (Use IP from table 1 to permute bits)

T(64) = ROUND 64(...... (ROUND 64 (P(64),VK 0(64))’ ------) rK r—2(64))’ rK r—1(64))
Ceny =P (Tiesy) (Transpose using inverse IP from table 2)
Where

algorithm from the key K ¢, -
The decryption Py, of 64-bit cipher text Cg,, is the same as the above encryption only

reversing the process of key scheduling, defined as:
Py = ROUND 64 (.....(ROUND 64 (C 51y, 7K , 151y)s K 1366y 7K o(sa)

Diwrice the plaintesdt wite eub ook

|

Initialization (Round Constant, Key), Sub Keys generation

¥

liuti1al Hersmeatalion |

|

Divide data block into two half (left, right)

-
Apply Feistel function to the right half

v

FUIR ke left ha £ ucith the A cting rasit.

'

Merge right half with the result from previous step

!

=R mwnd-1

¥

N
.

Fitval Pertnthat:nn

Figure 1: General Flowchart of the Proposed Block Cipher

-574-

J. Of College Of Education For Women vol. 24 (2) 2013

Table (1): Initial Permutation 7P 64-Bit Table (2): Inverse Initial Permutation IP 64-Bit

1 /2 |3 |4 |5 |6 |7 |8 1 |23 |4 |5 |6 |7 |8
1/58|50[42|34[26[18|10 |2 1/40|8 |48 |16 |56 |24 64|32
2/60[52|44|36[28|20|12 |4 21397 |47|15|55]23|63|31
3625446 |38[30(22|14|6 3/38|6 |46|14|54|22|62]|30
4164|5648 4032|2416 |8 41375 |45]13|53]21|61]29
95714914133 |25]17|9 |1 9364 |44|12|52 20|60 |28
6595143 |35]27]19|11|3 6353|4311 5119|5927
7161 [53|45|37|29|21|13]|5 71342 |42|10|50 |18 |58 |26
863554713931]23|15|7 8331419 49|17 |57 |25

2.1.1 The Internal Function
The function, used in DES64X built as Feistel schema, transforms a 64-bit input

X o4y SPlit into left and right 32-bit halves X g, =X,(32)HX,(32) and a 64-bit round key
7K 64y In @ 64-bit output Y, =Y,

Y, 2 IS done as follows:
Y(64) = 1(32)HY,‘(32) = ROUND64(X1(32)‘Xr(32)) = Xr—1(32)H(X[—1(32) (-Bf32(Xr—l(32) | ”K64)

Figure (2) illustrates the Round Function.

Kiers Hray
]

i

ird]

o, :"-".:z::

Figure 2: DES64X Round Function

Function 32 in DES64X consists of three layers, substitution layer noted as Sub4,
diffusion layer noted as Diff4, and Exclusive-OR as XOR layer. The 32-bit X ,, , 64-bit

round key is used as input and 32-bit Y,,, as an output. Function f32 is defined as:
F32(X (), 7K (44)) = Sub A(Diff 4(Sub 4(X 5, @ 1K 55,)) © 1K ;5)) ® 1K (5,

-575-

J. Of College Of Education For Women vol. 24 (2) 2013

The function Sub4 is a method by which as 32-bit as input X 5, = X oe) [Xye) [X 56) [Xse
and 32-bit as output. Defined as:
Yiapy = SubA(X o) | Xy0) | X oy | Xe)) = SHOX(X 5[SBOX(X 1))| SBOX(X 5) [SBOX(X)

This is illustrated in Figure (3).

-

Ko 7 uE) g SETE

r x. 2 . F gy ndddbann
{_ _-;" f _}" { _[}-' ': e -"K-.p.'.;. Tnwey

h v r v

o ay
Hhox | Y | | Lo | Bz | 4 Dox Lager
[QA] Duffusioa
1ares

rf:u:“]

"y
™
&
i
—i
&

—
it
T
i
&

Hhoz |

|:"‘_ -_:- :': _:,"I-l f___ ___:"‘ ':_T__.;" rf:-,:,ﬂ_n

. "
I 4 gy

Figure 3: 32-bit Feistel Function

2.2 DES128X

The DES128X is 16 time’s iteration of a round function denoted ROUND128 is built
as a Feistel schema, with INVR128 used for decryption.
Formally, these functions take 128-bit data block X ;,, , 128-bit round key 7K ., as

input and 128-bit output ¥, :
The encryption C ., 0f 128-bit plaintext P, is defined as:
Pyogy = IP(m54) (Use IP from table 3 to permute bits)
Tty = ROUND 128 (.....(ROUND 128 (Piyz5), K 108))iovens 7K 518y) 7K, y(128))
Cuzsy = IP" (Tys) (Transpose using inverse IP from table 4)
Where

Note that, the sub keys produced by the key schedule algorithm from the key K, .

The decryption F,,, of 128-bit cipher text C ., is the same as the encryption but in

reverse order of key scheduling, defined as:
Pyy = ROUND 128 (....(ROUND 128 (C 5, 7K , 106)is 7K 128) 7K o(1z0))

-576-

J. Of College Of Education For Women vol. 24 (2) 2013

Table (3): Initial permutation IP 128-bit

- 2 H 4 3 bl | u i 16 .1 d P I] i)
1 El 0 L1E 0 TIR | EY | uE E3 I Vo EE (41 EE PR A .
2 A 15 L7 sw | 9l HE T T 9| Al A3 3\ S El il 3
3 o 17 3 |9 BT R i A3 145 % BEI 13 il
: a7 12 NER 5 T LT B I P 3 =3 1< T
b e 14 P I FICR (B T B I PR P 3 IL. &
i i | EERE N (Y W 32 ¥ T R L I P I in BN | 12 14
b i 13 J] H O S e O O N Il i
b - | - I N b 1 Mo e [45 4o 2 | &4 | e b
Table (4): Inverse Initial permutation IP 128-bit
N I T - - T O I T IS O I -3 IS B IR PR I CA I T
1 | il LG] B e ax L | =00 1| L 120 D& 12e | o4
i s ! ! T i W4 P i1 LI 1T LS L 1250 | s
4 R ' K i i bl 4 100 = R KL 10] A 1.0 |t
il I 37 3 2l 21 E 2% G| =% L3 |44 17| <3 1251 i
£ 33 |1 %z |® [en ¥r [z [Je0[3€ | L3[4 [e[z [L#] oy
3 Y th T e 14 41 A xS 2t L 1M~ | % 104 | =9
7 cho|# ! M i 13 Al o LD =1 Lh |2 ULE 125 | 5%
£ o5 | L w3 &l |17 35 [z %% |32 ||’ [NE[p [lal]af

2.2.1 The internal function
The function used in DES128X is built as Feistel schema, which transform a 128-bit

input X, split into left and right 64-bit halves X 5 = X ,,(32)HX 1(32) HX ,,,(SZ)HX 32 and
a 128-bit round key 7K ;.5 in @ 128-bit output ¥ ;.4 =Y}, HY,,.(32)

Y., as follow:

rr

le(32)

Y(128) = Yl(32)

Yr(32) =ROUND128(X, 1(32) HX 1(32) HX #(32) HX rr(32)) =(X, 1r-1(32) H(X 1-1(32) D 64X, @) K64))H

(X, rr—l(32)H(X 11-1(32) D f64(X, r132)1 V- Ke,))
Figure (4) illustrates the Round Function.

Htay Ay Hon, S
I J [] []
- - LL g
e ;4 -
l.‘j‘.-"" 4 L
5'_“_',_1-:-" -

u Vi I

T e Y

Figure 4: DES128X Round Function

-577-

J. Of College Of Education For Women vol. 24 (2) 2013

Function f64in DES128X consists of three parts, substitution part noted as Sub8,
diffusion part noted as Diff8, round key part. This function takes 64-bit X 4, , 128-bit
round key as input and 64-bit Y., as an output.

The function f64 defined as:

[64 (X (g4), 7K (135)) = Sub 8(Diff 8(Sub 8(X (54) ® 1K 54))) © 1K 164)) © 7K ()
The function Sub8 is a method that takes 64-bit as input
X ey = Xoy | X | X o0 | X e[| X ey [X6y [X s66) [4 76) @ND B4-bit as output. Defined as:

Yoy =Suld(Xy HXl(a) HXZ(S) HXa(a) HXA(B) HXs(s) HXe(a) HX7(8))
=SboX Xy)HSbOJ(Xm))HSbOJ(XZ(s))HSboisz(S) HSbw(th(S) HSb@(Xs(S) HSbOJ(Xe(S) HSbOJ(an))

This is illustrated in Figure (5).

Ty X'm: e - ey - A';:

'
E

uoLow
| Shiex | R NH | Gl | Flas | Shie | | ERTTH | Al | B ITH Shalvebihadians
IS S A SR S SR
Laéd] B
Pozmacan
k] X x X
- o = e o
T e r e T
- k.
| Sz | Fla: | Flox | ERTTH | Al | b
T -T- T --T- - - -~
—— . i e - - et
et e o
- r
Loy i ' T e Loy

Figure 5: 64-Bit Feistel Function

And the S-Box function is a look up table defined in Table (5):

Table 5: DES64X, DES128X S-Box

L1 = 3 Y L bt
R T el E0 N e R
N T B | L:
sl o |3 R oap 45 F s | |@ v om|ow
AR R | ERREL I I Tl o e

F N O R R T I IS B
e A T A I T
v o) ou O T il T T
T & ool I % s L | .L| Tl s
i - 0 = f 13 W Ta|Ii | HE
I i R R T I N IR
e Iv: =4 <= LI 1 q 7 I 4 r
E L EL CECO i I L L
LR] L LA A N I B
n e W K 1 s F- 1 AE 1. FlO0% | RA = | F Sl

- 4 St E- - T R i- AR &t
I IF * IF|a3) EF ofn 82 3 Lo La | | G| a2

J. Of College Of Education For Women

3. Key-Schedule Algorithm

Key scheduling is used to derive the sub keys and it will be used in the following
manner: first, the key block is divided into halves many times depending on the size of
key block. Then, the halves are circularly shifted left by either one or two bits, depending
on the round. After being shifted, permutation operation is implemented on these halves,
and finally key production for each round is produced. Because of the shifting process, a
different subset of key bits is used in each sub key. The key scheduling algorithm is

illustrated in Figures 6 and 7.

For DES64X

K 64y = 7K 60 HrKl(GA')H

For DES128X

rK(lzg) = ’”Koazs) HrKl(lZB) “

”’” K 15(128)

“rrlial Tey B i - ‘

ﬂl lEE

a5 | [St Tk

oLz

-
L]

_'l
|

=l

-

!

i [Rer
I]
gL
v
-fr.g'F-i-"ui‘l ‘
o . b - "
s Lk | [STt Feks
= y 2
Frd ks]
| i byl

vol. 24 (2) 2013

¥ F
i1 s utll
¥]

, .
n, Feczawiladis

4

Haw

Figure 6: 64-bit key Schedule (KSched64X)

-579-

J. Of College Of Education For Women vol. 24 (2) 2013

cadiad Eewr Olocx (252

- de A l i - G) i 23 -
[Eaift 32-bis] [Eaaft 32-bis] ¥t $d-bes] Chift 33-b]
LY LY
- .]
Ex) R 3
[BLE bt l it ey i
' »
—.L B l‘i
¥y 135
- 2 o2 + -2 Ep
[Eoifd 33-bis] [Eaift 33-bis] Chift 53l l Chift 53-b]
—_———= L
24 - ! e 3 ¥ - A
[P L% bit J]
b ey 2
! .
—¢ ¥ *7

Figure 7: 128-bit key Schedule (KSched128X)

4. Core System Implementation

Java language is popular because of its platform independence, making it useful in

varieties of technologies ranging from embedded devices to high-performance systems.
The platform-independent property of Java, which is visible at the Java bytecode level, is
only made possible owing to the availability of a Virtual Machine (VM), which needs to
be designed specifically for each underlying hardware platform. More specifically, the
same Java bytecode should run properly on a 32-bit or a 64-bit VM. In this paper,
compare the behavioral characteristics of 32-bit and 64-bit VMs using the proposed
design. This is done using the DES64X and DES128X using JAVA builder 7.0.
The proposed design implementations of DES64X and DES128X are written for two
types of operating systems. By taking the advantage of the 64-bit operating system,
system implementation is done as follows; for the DES128X, store the two block halves
of each round operation in two separate 64-bit arrays. However, instead of storing them
in a 32-bit format, these are stored in a 64-bit format which resulted from applying the
permutation to a 64-bit array.

Each round then proceeds as follows; the right half, which is already in a 64-bit
array, is XORed with the first half of the subkey, which is also contained in a 64-bit
array. The resulting 64-bit array is divided into eight groups of eight bits, each of which
is used as an index to the S-box. Then the 128-bit permutation is applied to the 64-bit
array and the result is XORed with the second half of subkey. This mechanism treats the
S-box as a straightforward look up table. The look up table produces a 128-byte array,

-580-

J. Of College Of Education For Women vol. 24 (2) 2013

rather than a 32-byte array. This result is then XORed with the left half, which is also
stored in a 64-bit format.

The primary benefits of a 64-bit OS are in the increased computing capacity of
having twice the bandwidth of data flow and the ability to use more system memory
(RAM) than the 32-bit operating system [6].

5. Proposed Implementation

As mentioned before, the complete design was implemented with the use of 32, 64-
bit OS; figure (1) showed the proposed system. Each of the DES64X and DES128X
should support encryption and decryption. Decryption, in each case, uses the same
algorithm as encryption. The only difference is that the sub keys have to be generated in a
reverse order, as compared with encryption.

Each DESXX begins with Initial Permutation /P and ends with the inverse of the
initial permutation /P, This system has the possibility to process 64,128-bit independent
data blocks, which increases the operation throughput. The DESXX key scheduling can
be performed on the fly. The sub-keys generated by using the proposed key schedule
algorithm.

The key generator consists of 16 rounds. The 64,128-bits input key is initially divide
into two parts and goes through the appropriate shift operation and finally passed through
a second round permutation for each sub-key, as illustrated in figures 6 and 7.

At the start, the 64-bits data block, encryption key is applied on the key scheduler to
pre compute the sixteen 64,128-bit sub keys and store it as an array of bytes in order to
force the appropriate key at the appropriate time. Finally, the encryption key is forced and
DESXX operates in the encryption mode.

6. Functional Description

After an initial permutation, the input data is split into two half words, left and right.
This is followed by 16 rounds of identical operations. The right word is processed with
Feistel function that includes XOR operation, S boxes substitution and diffusion
operation as depicted in figures 5 and 6. The output of the S boxes is permuted and then
XORed with the left word. The result is used to update the right word array at the end of
each round. Also, the previous right word is stored in the left word array. The processed
key changes at each round as well, owing to shift and permutation operations in key
schedule algorithm. At the end of the 16 rounds the left and right words are reassembled
together and passed through the inverse of the initial permutation. The DESXX core is
partitioned into two modules as showed in figures 2 and 4.

6.1 Key Process and Initial Permutation methods

In key process, a class is responsible for dividing the input key that is used at every
round. However, initial permutation it simply performs an initial permutation of input
data bits.

6.2 S-Box Tables
This is a group of 8 input and 8 output look up tables that maps the incoming 8-bit
word into an 8-bit one for DES128X and four-8 input and 8 output that will map the

-581-

J. Of College Of Education For Women vol. 24 (2) 2013

incoming 8-bit. S-box is usually implemented as an array of constants that is indexed by
the 8-bit input.

6.3 Permutation and Final Permutation Methods.
Permutation method performs a permutation on input data bits while final
Permutation method performs a final permutation of the bits of the output data.

6.4 Mode
This unit controls the mode of the proposed system (if mode=1 the system is an
encryption mode else the system in decryption mode).

7. Overall System Scenario

The proposed system is a block cipher designed to use simple whole-byte operations.
The system is secure and versatile because it uses large blocks of data and a key. Both
key and block size can be chosen to be 64,128-bits. The cipher uses a fix number of
rounds equal to 16.

Four different stages are used during encryption and decryption, as can be seen in
figure 1, including permutation process, applying Feistel function, XOR operation, and
mix operation. The XOR, Substitution, and permutation stages are explained as follow:
The substitute bytes transformation (S-box) is a simple lookup table. Proposed system
defines a 16 x 16 array of byte values, the S-box, which contains a permutation of all
possible 256 8-bit values. Each byte is mapped to a new byte in the following manner:
The leftmost 4 bits are used as a column value. Row and column values use as indexes
into the S-box to select 8-bit output.

XOR stage performs a bitwise XOR on 64, 128-bits of the state with the 64, 128-bits
of the round key. The flow of one round of the proposed block cipher is seen in figures 2
and 4.

The proposed block cipher is implemented using JAVA Builder 7.0 with a 64,128-bit
block size, a 64,128-bit key size, and Feistel schema. Using two key sizes is sufficient to
describe the performance of the block cipher algorithm in Java. The program is built such
that all arguments are passed from the command line, enabling the program to be called
from scripts. Five files are expected: the text file, a file where the encrypted data is
written, a decrypted file where the decrypted contents of the encrypted file are written.
Two files containing the 64,128-bit key in hex format, and a results file. The main
method initializes the variables and ensures that the correct number of arguments is
passed from the command line, initializing the constructor and then calls the test method.

The test method performs timing functions, results compilation, and calls encrypt and
decrypt methods, which takes the key as a parameter. The encrypt and decrypt functions
initialize the cipher with the key and read in the text file or ciphertext then perform the
encryption or decryption and writing out the results to output files.

8. Testing Data File

The program is designed to encrypt and decrypt five files of different sizes of
1 OKB, 2MB, 20MB, 200MB and 300MB. The plaintext file was encrypted and written
to a ciphertext file then the ciphertext file was decrypted and written to a different

-582-

J. Of College Of Education For Women vol. 24 (2) 2013

plaintext file with the speed of encryption and decryption being timed (capturing several
data components during the process, including the encrypting, decrypting and current
system times). The resulting times of each file being encrypted or decrypted written to a
file. The results were then compiled and analyzed.

9. Experimental Results

Test results were being done using Windows XP SP3 professional 32-bit and 64-bit
operating system with an Intel® Core 2Due Processor T7250 @2.00GHz-2MB L2 Cache
and 1024 MB RAM, the compilers and libraries used are:

» Java Builder 7.0, SDK Standard Edition Version 6.5

» Java Cryptography Extension (JCE) using Crypto++ library and JCE API [7].

Time of encryption and decryption is calculated by capturing the current system time
using Java system calls immediately before calling either the encrypt or decrypt methods
and capturing the current system time immediately after the method returns. Finally, the
end time is subtracted from the start time and the results are written to file.

Look at the overall performance (encryption) for different file sizes, for the system.
Execution time for each algorithm is calculated as execution time without file 1/0 (only
the cipher block without I/0 memory). Timing is calculated as an average of 5 runs for
each algorithm for more accurate result. The five different file sizes are considered to
observe the performance of the algorithm, and resultant times are recorded.

As mentioned above, five files of different sizes were encrypted and decrypted by each
combination: 100KB, 2MB, 20MB, 200MB and 300MB. The plaintext file was encrypted
and written to a ciphertext file then the ciphertext file was decrypted and written to a
different plaintext file with the speed of encryption and decryption being timed as in
tables 6,7,8,9. The encryption and decryption process was repeated 5 times to assure that
the results are consistent and are valid to compare the performance on the operating
systems. The resulting times of each run being written to file. The results were then
compiled and analyzed.

Comparison of execution times for the DES64X and DES128X encryption using
different file sizes are shown in tables 6 and 7, and comparison of execution times for
decryption the same files are shown in tables 8 and 9. A comparison is conducted
between the results of encryption and decryption schemes in terms of encryption,
decryption time and throughputs. A study is performed on the effect of changing file size
on throughput, and CPU time for each mode of proposed system.

Table 6: Time consumption of DES64X for encrypt different file sizes without
File 1/O (in millisecond)

File size | 32-bit OS 64-bit OS
100KB 24.39 125
2MB 487.8 250
20MB 4852 2350
200MB 48780.5 24250
300MB 73170.73 37500

-583-

J. Of College Of Education For Women

Table 7: Time consumption of DES128X for encrypt different file sizes without
File 1/0O (in millisecond)

37.037

18.867

740.7

377.35

7500.4 3675.5
73075 37850
110250.1 56603.7

Table 8: Time consumption of DES64X for decrypt different file sizes without
File 1/0O (in millisecond)

16.94

338.9

3375.8 2075
33890.2 20408
50847.5 30612

Table 9: Time consumption of DES128X for decrypt different file sizes without
File 1/0O (in millisecond)

23.25

15.38

465.1

307.65

4575 3075.9
46511.6 30796.2
69767.4 46153.9

This implementation achieved a throughput as shown in tables 10 and 11.

Table 10: Throughput of DES64X to encrypt and decrypt different file size

(Megabytes/Second)

41

8

5.9

9.8

Table 11: Throughput of DES128X to encrypt and decrypt different file size
(Megabytes/Second)

2.7

5.3

4.3

6.5

10. Conclusions

vol. 24 (2) 2013

The work presented here is primarily concerned with the design and implementation
of new DES64X and DES128X on 32, 64 Bit Operating System Environments. The
DES128X system is more secure but it slows down the encryption when implemented on
32-bit platform, because it has to do more work for the same amount of input data in a
single execution cycle.

-584-

J. Of College Of Education For Women vol. 24 (2) 2013

This paper focuses on system implementation based on a 64-bit platform. The
proposed DES64X on 64-bit OS implementation is faster compared with that on 32-bit.
From these results, it is easy to observe that 64-bit operating system has an advantage
over other 32-bit operating systems in terms of throughput for large data. Also DES64X
on 64-bit has almost approximately twice the throughput of DES64X on 32-bit, in other
words it needs half of the time as compared with DES64X when implemented on 32-bit,
to process the same amount of data.

References

[1] Stallings W., "Cryptography and Network Security", Principles and Practice, 3"
Edition, Prentice Hill, 2002.

[2] Ashish Patel and Ajay Kumar Garg, '"Study and Implementation of
Cryptographic Algorithms', 2008.

[3] K. Anup Kumar and S. Udaya Kumar, “Block cipher using key based random
permutations and key based random substitutions”, March 2008.

[4] Lars Ramkilde Knudsen, "Block Ciphers Analysis, Design and Applications",
PhD thesis, Aarhus University, Denmark, July 1, 1994.

[5] T. Shirai and K. Shibutani, "On Feistel Structures Using a Diffusion Switching
Mechanism", Springer- Verlag, 2006.

[6] Microsoft Help and Support, “Overview of the compatibility considerations for 32-

bit programs on 64-bit versions of Windows”,

http://support.microsoft.com/kb/896456#XSLTH3120121124120121120120

[7] Scott oaks, "JAVA Security" 2" Edition, 2002, O'Reilly & Associates, Inc.

-585-

