
J. Of College Of Education For Women vol. 24 (2) 2013

-572-

Design and Implementation of New DES64X and DES128X on
32, 64 Bit Operating System Environments

Ammar H. Jasim
Department of computer Science /College of Science for women

University of Baghdad
E-mail: ammar_hussein_2004@yahoo.com

Abstract
In this paper, a description of a design for new DES block cipher, namely DES64X

and DES128X. The goals of this design, a part of its security level, are large
implementation flexibility on various operating systems as well as high performances.
The high level structure is based on the principle of DES and Feistel schema, and
proposes the design of an efficient key-schedule algorithm which will output pseudo-
random sequences of sub keys.

The main goal is to reach the highest possible flexibility, in terms of round numbers,
key size, and block size. A comparison of the proposed systems on 32-bit, 64-bit
operating system, using 32-bit and 64-bit Java Virtual Machine (JVM), showed that the
latter has much better performance than the former.

البیانات القیاسیة تشفیر لجدیدةطریقةنفیذتصمیم وت
ثنائیة٦٤و ٣٢تشغیل بیئات نظام في

عمار حسین جاسم
جامعة بغداد/كلیة العلوم للبنات/قسم علوم الحاسبات

com.yahoo@2004_inhusse_ammar: البرید الالكتروني

المستخلص
, , في ھذه الورقة البحثیة

٦٤١٢٨ . ,
نظمةَِِوالامن ِِأ ِ َ ْ اعلى مبداستند . العاليالأداءُ

والتيمع اعدادخوارزمیة تشفیر البیانات القیاسیة و صیغة فیستل
.عشوائیة للمفاتیح الجزئیةشبھتكون مخرجاتھا سلسلة

ِالمدورالرقمتبدأ من ناحیة ,مرونة ممكنةاعلى الھدف الرئیسي ھو الوصول الى .سعة حیز الخزنالمفتاح و سعةو, ّ
ِالمقترحةِالأنظمةَتطبیقلَةقارنمعرضنا َ َ الإفتراضیةثنائیة باستعمال ماكنة جافا ٦٤ثنائیة و ٣٢نظام تشغیل علىُ

.ولاداء النظام الثاني الى الاوبینا افضلیة

J. Of College Of Education For Women vol. 24 (2) 2013

-573-

1. Introduction
DES is one of the most popular block ciphers. It is a block cipher encrypting 64 bits

of data block with a 56-bit key size. The small key size and increased computing power
of modern computers make DES unsafe with exhaustive search attack. Therefore, a
cipher based on DES with a larger key size is necessary [1].

DES is used in many and varied crypto-based applications. It is used to protect the
secrecy of login passwords, E-mail messages, video transmission (such as pay-per-view
movies), stored data files, and internet distributed digital content, etc [2].
In this paper, the objective is to develop a block cipher where the key and block sizes are
significantly large. The proposed block cipher relies upon the encryption techniques of
confusion and diffusion.

Confusion is accomplished through substitution. Specially chosen sections of data
are substituted for corresponding sections from the original data. The choice of the
substituted data is based upon the key and the original plaintext. Diffusion is
accomplished through permutation. The data is permuted by rearranging the order of the
various sections. These permutations, like the substitutions, are based upon the key and
the original plaintext [3].

The substitutions and permutations are specified in the proposed system, by the DES
algorithm [4]. Chosen sections of the key and the data are manipulated mathematically
and then used as an input to a look-up table. These tables are called the S-boxes and the
P-boxes, for the substitution tables and the permutation tables. In software terms, these
look-up tables are realized as arrays of bytes. Usually the S-box and P-box are combined
so that the substitution and the following permutation for each round can be done with a
single operation. In order to calculate the inputs to the S-box and P-box arrays, portions
of the data are XORed with portions of the key. One of the 32, 64-bit halves of the
64,128-bit data and the 64,128-bit key are used. The S-box, P-box look-up tables, and
calculations, upon key and data which generate the inputs will constitute a single round of
feedback to the system.

The same process of S-box and P-box substitution and permutation is repeated
sixteen times, forming the sixteen rounds of the block cipher algorithm. There are also
initial and final permutations which occur before and after the sixteen rounds. These
initial and final permutations exist for historical reasons dealing with implementation on
hardware and do not improve the security of the algorithm. For this reason they are left
out of system implementations at capture time. They are, however, included in this
literature analysis as they are part of the technical definition of the proposed system.

2. Proposed Design Description
The design has two versions, 32-bit and 64-bit. The first one was designed for 32-bit

operating system and using 64-bit block cipher with 64-bit key, the other for 64-bit
operating system with same features as in the 32-bit, however, the key length equal to
128-bit.

2.1 DES64X
As illustrated in figure (1), the DES64X is a 16-time iteration of a round function

denoted by ROUND64, which is built as a Feistel schema [5].

J. Of College Of Education For Women vol. 24 (2) 2013

-574-

Formally, these functions take 64-bit)64(X , 64-bit round key)64(rK as input, and 64-bit
output)64(Y . The encryption)64(C of a 64-bit plaintext)64(P is defined as:

)()64()64(mIPP  (Use IP from table 1 to permute bits)
)),),......,,(64(......(64)64(1)64(2)64(0)64()64( rr rKrKrKPROUNDROUNDT

)()64(
1

)64(TIPC  (Transpose using inverse IP from table 2)
Where

)64(1)64(1)64(0)64(......  rrKrKrKrK , are the sub keys produced by the key schedule

algorithm from the key)64(K .
The decryption)64(P of 64-bit cipher text)64(C is the same as the above encryption only
reversing the process of key scheduling, defined as:

)),),......,,(64(......(64)64(0)64(1)64(1)64()64(rKrKrKCROUNDROUNDP r 

Figure 1: General Flowchart of the Proposed Block Cipher

Start

End

Initialization (Round Constant, Key), Sub Keys generation

Divide data block into two half (left, right)

Apply Feistel function to the right half

Merge right half with the result from previous step

J. Of College Of Education For Women vol. 24 (2) 2013

-575-

Table (1): Initial Permutation IP 64-Bit Table (2): Inverse Initial Permutation IP 64-Bit

2.1.1 The Internal Function
The function, used in DES64X built as Feistel schema, transforms a 64-bit input

)64(X split into left and right 32-bit halves)32()32()64(rl XXX  and a 64-bit round key

)64(rK in a 64-bit output)32()32()64(rl YYY  is done as follows:

),(32()(64 64)32(1)32(1)32(1)32()32()32()32()64(rKXfXXXXROUNDYYY rlrrlrl  

Figure (2) illustrates the Round Function.

Figure 2: DES64X Round Function

Function 32f in DES64X consists of three layers, substitution layer noted as Sub4,
diffusion layer noted as Diff4, and Exclusive-OR as XOR layer. The 32-bit)32(X , 64-bit
round key is used as input and 32-bit)32(Y as an output. Function 32f is defined as:

)32(0)32(1)32(0)32()64()32()))(4(4(4),(32 rKrKrKXSubDiffSubrKXf 

1 2 3 4 5 6 7 8
1 58 50 42 34 26 18 10 2
2 60 52 44 36 28 20 12 4
3 62 54 46 38 30 22 14 6
4 64 56 48 40 32 24 16 8
5 57 49 41 33 25 17 9 1
6 59 51 43 35 27 19 11 3
7 61 53 45 37 29 21 13 5
8 63 55 47 39 31 23 15 7

1 2 3 4 5 6 7 8
1 40 8 48 16 56 24 64 32
2 39 7 47 15 55 23 63 31
3 38 6 46 14 54 22 62 30
4 37 5 45 13 53 21 61 29
5 36 4 44 12 52 20 60 28
6 35 3 43 11 51 19 59 27
7 34 2 42 10 50 18 58 26
8 33 1 41 9 49 17 57 25

J. Of College Of Education For Women vol. 24 (2) 2013

-576-

The function Sub4 is a method by which as 32-bit as input)8(3)8(2)8(1)8(0)32(XXXXX 

and 32-bit as output. Defined as:
)()()()()(4)8(3)8(2)8(1)8(0)8(3)8(2)8(1)8(0)32(XSboxXSboxXSboxXSboxXXXXSubY 

This is illustrated in Figure (3).

Figure 3: 32-bit Feistel Function

2.2 DES128X
The DES128X is 16 time's iteration of a round function denoted ROUND128 is built

as a Feistel schema, with INVR128 used for decryption.
Formally, these functions take 128-bit data block)128(X , 128-bit round key)128(rK as
input and 128-bit output)128(Y :
The encryption)128(C of 128-bit plaintext)128(P is defined as:

)()128()128(mIPP  (Use IP from table 3 to permute bits)
)),),......,,(128(......(128)128(1)128(2)128(0)128()128( rr rKrKrKPROUNDROUNDT

)()128(
1

)128(TIPC  (Transpose using inverse IP from table 4)
Where

)128(1)128(1)128(0)128(......  rrKrKrKrK

Note that, the sub keys produced by the key schedule algorithm from the key)128(K .
The decryption)128(P of 128-bit cipher text)128(C is the same as the encryption but in
reverse order of key scheduling, defined as:

)),),......,,(128(......(128)128(0)128(1)128(1)128()128(rKrKrKCROUNDROUNDP r 

J. Of College Of Education For Women vol. 24 (2) 2013

-577-

Table (3): Initial permutation IP 128-bit

Table (4): Inverse Initial permutation IP 128-bit

2.2.1 The internal function
The function used in DES128X is built as Feistel schema, which transform a 128-bit

input)128(X split into left and right 64-bit halves)32()32()32()32()128(rrrllrll XXXXX  and

a 128-bit round key)128(rK in a 128-bit output)32()32()32()32()128(rrrllrll YYYYY  as follow:

)),(64((

)),(64(()(128

64)32(1)32(1)32(1

64)32(1)32(1)32(1)32()32()32()32()32()32()128(

rKXfXX

rKXfXXXXXXROUNDYYY

rrrlrr

lrlllrrrrllrllrl









Figure (4) illustrates the Round Function.

Figure 4: DES128X Round Function

J. Of College Of Education For Women vol. 24 (2) 2013

-578-

Function 64f in DES128X consists of three parts, substitution part noted as Sub8,
diffusion part noted as Diff8, round key part. This function takes 64-bit)64(X , 128-bit
round key as input and 64-bit)64(Y as an output.
The function f64 defined as:

)64(0)64(1)64(0)64()128()64()))(8(8(8),(64 rKrKrKXSubDiffSubrKXf 
The function Sub8 is a method that takes 64-bit as input

)8(7)8(6)8(5)8(4)8(3)8(2)8(1)8(0)64(XXXXXXXXX  and 64-bit as output. Defined as:

)((((()()()(

)(8

)8(7)8(6)8(5)8(4)8(3)8(2)8(1)8(0

)8(7)8(6)8(5)8(4)8(3)8(2)8(1)8(0)64(

XSboxXSboxXSboxXSboxXSboxXSboxXSboxXSbox

XXXXXXXXSubY





This is illustrated in Figure (5).

Figure 5: 64-Bit Feistel Function

And the S-Box function is a look up table defined in Table (5):

Table 5: DES64X, DES128X S-Box

J. Of College Of Education For Women vol. 24 (2) 2013

-579-

3. Key-Schedule Algorithm
Key scheduling is used to derive the sub keys and it will be used in the following

manner: first, the key block is divided into halves many times depending on the size of
key block. Then, the halves are circularly shifted left by either one or two bits, depending
on the round. After being shifted, permutation operation is implemented on these halves,
and finally key production for each round is produced. Because of the shifting process, a
different subset of key bits is used in each sub key. The key scheduling algorithm is
illustrated in Figures 6 and 7.
For DES64X

)64(15)64(1)64(0)64(........... rKrKrKrK 

For DES128X

)128(15)128(1)128(0)128(........... rKrKrKrK 

Figure 6: 64-bit key Schedule (KSched64X)

J. Of College Of Education For Women vol. 24 (2) 2013

-580-

Figure 7: 128-bit key Schedule (KSched128X)

4. Core System Implementation
Java language is popular because of its platform independence, making it useful in

varieties of technologies ranging from embedded devices to high-performance systems.
The platform-independent property of Java, which is visible at the Java bytecode level, is
only made possible owing to the availability of a Virtual Machine (VM), which needs to
be designed specifically for each underlying hardware platform. More specifically, the
same Java bytecode should run properly on a 32-bit or a 64-bit VM. In this paper,
compare the behavioral characteristics of 32-bit and 64-bit VMs using the proposed
design. This is done using the DES64X and DES128X using JAVA builder 7.0.
The proposed design implementations of DES64X and DES128X are written for two
types of operating systems. By taking the advantage of the 64-bit operating system,
system implementation is done as follows; for the DES128X, store the two block halves
of each round operation in two separate 64-bit arrays. However, instead of storing them
in a 32-bit format, these are stored in a 64-bit format which resulted from applying the
permutation to a 64-bit array.

Each round then proceeds as follows; the right half, which is already in a 64-bit
array, is XORed with the first half of the subkey, which is also contained in a 64-bit
array. The resulting 64-bit array is divided into eight groups of eight bits, each of which
is used as an index to the S-box. Then the 128-bit permutation is applied to the 64-bit
array and the result is XORed with the second half of subkey. This mechanism treats the
S-box as a straightforward look up table. The look up table produces a 128-byte array,

J. Of College Of Education For Women vol. 24 (2) 2013

-581-

rather than a 32-byte array. This result is then XORed with the left half, which is also
stored in a 64-bit format.

The primary benefits of a 64-bit OS are in the increased computing capacity of
having twice the bandwidth of data flow and the ability to use more system memory
(RAM) than the 32-bit operating system [6].

5. Proposed Implementation
As mentioned before, the complete design was implemented with the use of 32, 64-

bit OS; figure (1) showed the proposed system. Each of the DES64X and DES128X
should support encryption and decryption. Decryption, in each case, uses the same
algorithm as encryption. The only difference is that the sub keys have to be generated in a
reverse order, as compared with encryption.

Each DESXX begins with Initial Permutation IP and ends with the inverse of the
initial permutation 1IP . This system has the possibility to process 64,128-bit independent
data blocks, which increases the operation throughput. The DESXX key scheduling can
be performed on the fly. The sub-keys generated by using the proposed key schedule
algorithm.

The key generator consists of 16 rounds. The 64,128-bits input key is initially divide
into two parts and goes through the appropriate shift operation and finally passed through
a second round permutation for each sub-key, as illustrated in figures 6 and 7.

At the start, the 64-bits data block, encryption key is applied on the key scheduler to
pre compute the sixteen 64,128-bit sub keys and store it as an array of bytes in order to
force the appropriate key at the appropriate time. Finally, the encryption key is forced and
DESXX operates in the encryption mode.

6. Functional Description
After an initial permutation, the input data is split into two half words, left and right.

This is followed by 16 rounds of identical operations. The right word is processed with
Feistel function that includes XOR operation, S boxes substitution and diffusion
operation as depicted in figures 5 and 6. The output of the S boxes is permuted and then
XORed with the left word. The result is used to update the right word array at the end of
each round. Also, the previous right word is stored in the left word array. The processed
key changes at each round as well, owing to shift and permutation operations in key
schedule algorithm. At the end of the 16 rounds the left and right words are reassembled
together and passed through the inverse of the initial permutation. The DESXX core is
partitioned into two modules as showed in figures 2 and 4.

6.1 Key Process and Initial Permutation methods
In key process, a class is responsible for dividing the input key that is used at every

round. However, initial permutation it simply performs an initial permutation of input
data bits.

6.2 S-Box Tables
This is a group of 8 input and 8 output look up tables that maps the incoming 8-bit

word into an 8-bit one for DES128X and four-8 input and 8 output that will map the

J. Of College Of Education For Women vol. 24 (2) 2013

-582-

incoming 8-bit. S-box is usually implemented as an array of constants that is indexed by
the 8-bit input.

6.3 Permutation and Final Permutation Methods.
Permutation method performs a permutation on input data bits while final

Permutation method performs a final permutation of the bits of the output data.

6.4 Mode
This unit controls the mode of the proposed system (if mode=1 the system is an

encryption mode else the system in decryption mode).

7. Overall System Scenario
The proposed system is a block cipher designed to use simple whole-byte operations.

The system is secure and versatile because it uses large blocks of data and a key. Both
key and block size can be chosen to be 64,128-bits. The cipher uses a fix number of
rounds equal to 16.

Four different stages are used during encryption and decryption, as can be seen in
figure 1, including permutation process, applying Feistel function, XOR operation, and
mix operation. The XOR, Substitution, and permutation stages are explained as follow:
The substitute bytes transformation (S-box) is a simple lookup table. Proposed system
defines a 16 x 16 array of byte values, the S-box, which contains a permutation of all
possible 256 8-bit values. Each byte is mapped to a new byte in the following manner:
The leftmost 4 bits are used as a column value. Row and column values use as indexes
into the S-box to select 8-bit output.

XOR stage performs a bitwise XOR on 64, 128-bits of the state with the 64, 128-bits
of the round key. The flow of one round of the proposed block cipher is seen in figures 2
and 4.
The proposed block cipher is implemented using JAVA Builder 7.0 with a 64,128-bit
block size, a 64,128-bit key size, and Feistel schema. Using two key sizes is sufficient to
describe the performance of the block cipher algorithm in Java. The program is built such
that all arguments are passed from the command line, enabling the program to be called
from scripts. Five files are expected: the text file, a file where the encrypted data is
written, a decrypted file where the decrypted contents of the encrypted file are written.
Two files containing the 64,128-bit key in hex format, and a results file. The main
method initializes the variables and ensures that the correct number of arguments is
passed from the command line, initializing the constructor and then calls the test method.
The test method performs timing functions, results compilation, and calls encrypt and
decrypt methods, which takes the key as a parameter. The encrypt and decrypt functions
initialize the cipher with the key and read in the text file or ciphertext then perform the
encryption or decryption and writing out the results to output files.

8. Testing Data File
The program is designed to encrypt and decrypt five files of different sizes of

1٠0KB, 2MB, 20MB, 200MB and 300MB. The plaintext file was encrypted and written
to a ciphertext file then the ciphertext file was decrypted and written to a different

J. Of College Of Education For Women vol. 24 (2) 2013

-583-

plaintext file with the speed of encryption and decryption being timed (capturing several
data components during the process, including the encrypting, decrypting and current
system times). The resulting times of each file being encrypted or decrypted written to a
file. The results were then compiled and analyzed.

9. Experimental Results
Test results were being done using Windows XP SP3 professional 32-bit and 64-bit

operating system with an Intel® Core 2Due Processor T7250 @2.00GHz-2MB L2 Cache
and 1024 MB RAM, the compilers and libraries used are:

• Java Builder 7.0, SDK Standard Edition Version 6.5
• Java Cryptography Extension (JCE) using Crypto++ library and JCE API [7].

Time of encryption and decryption is calculated by capturing the current system time
using Java system calls immediately before calling either the encrypt or decrypt methods
and capturing the current system time immediately after the method returns. Finally, the
end time is subtracted from the start time and the results are written to file.
Look at the overall performance (encryption) for different file sizes, for the system.
Execution time for each algorithm is calculated as execution time without file I/O (only
the cipher block without I/O memory). Timing is calculated as an average of 5 runs for
each algorithm for more accurate result. The five different file sizes are considered to
observe the performance of the algorithm, and resultant times are recorded.
As mentioned above, five files of different sizes were encrypted and decrypted by each
combination: 100KB, 2MB, 20MB, 200MB and 300MB. The plaintext file was encrypted
and written to a ciphertext file then the ciphertext file was decrypted and written to a
different plaintext file with the speed of encryption and decryption being timed as in
tables 6,7,8,9. The encryption and decryption process was repeated 5 times to assure that
the results are consistent and are valid to compare the performance on the operating
systems. The resulting times of each run being written to file. The results were then
compiled and analyzed.

Comparison of execution times for the DES64X and DES128X encryption using
different file sizes are shown in tables 6 and 7, and comparison of execution times for
decryption the same files are shown in tables 8 and 9. A comparison is conducted
between the results of encryption and decryption schemes in terms of encryption,
decryption time and throughputs. A study is performed on the effect of changing file size
on throughput, and CPU time for each mode of proposed system.

Table 6: Time consumption of DES64X for encrypt different file sizes without
File I/O (in millisecond)

File size 32-bit OS 64-bit OS
100KB 24.39 12.5
2MB 487.8 250
20MB 4852 2350
200MB 48780.5 24250
300MB 73170.73 37500

J. Of College Of Education For Women vol. 24 (2) 2013

-584-

Table 7: Time consumption of DES128X for encrypt different file sizes without
File I/O (in millisecond)

File size 32-bit OS 64-bit OS
100KB 37.037 18.867
2MB 740.7 377.35
20MB 7500.4 3675.5
200MB 73075 37850
300MB 110250.1 56603.7

Table 8: Time consumption of DES64X for decrypt different file sizes without
File I/O (in millisecond)

File size 32-bit OS 64-bit OS
100KB 16.94 10.2
2MB 338.9 204.08
20MB 3375.8 2075
200MB 33890.2 20408
300MB 50847.5 30612

Table 9: Time consumption of DES128X for decrypt different file sizes without
File I/O (in millisecond)

File size 32-bit OS 64-bit OS
100KB 23.25 15.38
2MB 465.1 307.65
20MB 4575 3075.9
200MB 46511.6 30796.2
300MB 69767.4 46153.9

This implementation achieved a throughput as shown in tables 10 and 11.

Table 10: Throughput of DES64X to encrypt and decrypt different file size
(Megabytes/Second)

32-bit OS 64-bit OS
Encryption 4.1 8
Decryption 5.9 9.8

Table 11: Throughput of DES128X to encrypt and decrypt different file size
(Megabytes/Second)

32-bit OS 64-bit OS
Encryption 2.7 5.3
Decryption 4.3 6.5

10. Conclusions
The work presented here is primarily concerned with the design and implementation

of new DES64X and DES128X on 32, 64 Bit Operating System Environments. The
DES128X system is more secure but it slows down the encryption when implemented on
32-bit platform, because it has to do more work for the same amount of input data in a
single execution cycle.

J. Of College Of Education For Women vol. 24 (2) 2013

-585-

This paper focuses on system implementation based on a 64-bit platform. The
proposed DES64X on 64-bit OS implementation is faster compared with that on 32-bit.
From these results, it is easy to observe that 64-bit operating system has an advantage
over other 32-bit operating systems in terms of throughput for large data. Also DES64X
on 64-bit has almost approximately twice the throughput of DES64X on 32-bit, in other
words it needs half of the time as compared with DES64X when implemented on 32-bit,
to process the same amount of data.

References
[1] Stallings W., "Cryptography and Network Security", Principles and Practice, 3rd

Edition, Prentice Hill, 2002.
[2] Ashish Patel and Ajay Kumar Garg, "Study and Implementation of

Cryptographic Algorithms", 2008.
[3] K. Anup Kumar and S. Udaya Kumar, “Block cipher using key based random

permutations and key based random substitutions”, March 2008.
[4] Lars Ramkilde Knudsen, "Block Ciphers Analysis, Design and Applications",

PhD thesis, Aarhus University, Denmark, July 1, 1994.
[5] T. Shirai and K. Shibutani, "On Feistel Structures Using a Diffusion Switching

Mechanism", Springer- Verlag, 2006.
[6] Microsoft Help and Support, “Overview of the compatibility considerations for 32-

bit programs on 64-bit versions of Windows”,
http://support.microsoft.com/kb/896456#XSLTH3120121124120121120120

[7] Scott oaks, "JAVA Security" 2nd Edition, 2002, O'Reilly & Associates, Inc.

