
J. Of College Of Education For Women vol. 24 (2) 2013

-553-

An Application Domain Based on General Object Oriented Software
Models

Buthainah Fahran Al-Dulaimi
College of Education for Woman, University of Baghdad, Iraq,

buthynna@hotmail.com

Abstract:
Any software application can be divided into four distinct interconnected domains namely,

problem domain, usage domain, development domain and system domain. A methodology for
assistive technology software development is presented here that seeks to provide a framework for
requirements elicitation studies together with their subsequent mapping implementing use-case
driven object-oriented analysis for component based software architectures. Early feedback on
user interface components effectiveness is adopted through process usability evaluation. A model
is suggested that consists of the three environments; problem, conceptual, and representational
environments or worlds. This model aims to emphasize on the relationship between the objects and
classes in the representational model and the elements in the considered system. Implementing this
model on some practical examples is investigated and resulted into promising improvement in
software design and understanding.

Key words: Object Oriented Modeling, Software Modeling, Software Domains and Software Architecture.

إلى نماذج برامج كائنیة المنحى عامةٍمستندٍمجال تطبیق

بثینة فھران الدلیمي
جامعة بغداد/ كلیة التربیة للبنات

:المستخلص
نطاق الاستخدام ونطاق التنمیة ویمكن تقسیم أي تطبیق برامج في اربعة مجالات مختلفة مترابطة وھي نطاق المشكلة،

التكنولوجیا المساعدة لتطویر البرمجیات ھنا أن تسعى إلى توفیر إطار لدراسة الاستنباط مع ویراد من منھجیة . ونطاق النظام
واعتمدت الملاحظات في وقت مبكر على واجھة المستخدم من خلال تقییم فعالیة مكونات عملیة . متطلبات التعیین في وقت التنفیذ

ھذا النموذج یھدف . ؛ المشكلة، المفاھیمیة، وبیئات التمثیل أو العالمیننموذج الذي یتكون من البیئات الثلاثویقترح الا. الاستخدام
لنموذج على بعض الأمثلة ھذا اوقد نفذ. إلى التأكید على العلاقة بین الكائنات والطبقات في النموذج التمثیلي والعناصر في النظام

.ات والتفاھمتم التحقیق فیھا وأدت إلى تحسین واعد في مجال تصمیم البرمجیالعملیة

-554-

1. Introduction
Object-Oriented software methodologies provide notations and guidance to model both the
static structure of the program and the dynamic behavior of the objects. These methodologies
assist programmers to analyze, understand, design, visualize, and document artifacts in soft-
ware systems. Any problem environment is the observed domain or the real world even if it is
virtual one. It consists of phenomena that can be classified by conceptual methodology through
obstruction resulting into the construction of a model environment, called conceptual envi-
ronment. Phenomena are observed in the problem environment and classified into concepts in
the same environment[1]. This environment includes the modeler and the perspective applied to
the real world. Domain elements in both problem environment and model environment are
tightly connected. The perspective alone determines to what extent the model should reflect
certain aspects of the problem environment, i.e. to what extent it represents the real world. In
the model environment, descriptions are applied to model concepts and representations are
applied to model phenomena. It might be noted that any description serves as a specification
and a representation serves as an instance[2].
Software modeling can be defined as a mapping technique for a set of phenomena and concepts
on a real environment to corresponding objects and classes in a model environment while the
reverse process is called interpretation. Tippell and Oregan[2] used object oriented model for
associative technology software development. User interfaces and object oriented model were
implemented by Thomson[3]. Support for intuition, exhibiting and collaboration in case tools
for creative OO modeling was tackled by Damma et al.[4]. Component introduction as a con-
ceptual architecture model is suggested by Nowack[5]. Concept and language mechanism in
software modeling was considered by Jacobsen[6]. Perry and Wolf[7] introduced theoretical and
practical aspects of software architecture which are then broadly adopted in industry[8]. The
architecture model expresses the developer's conception of the system architecture in order to
understand the system model from some perspectives. S/w development processes turned into
architecture centric either for dealing with complexity, risk management or effective resolution
of quality attributes. Hofmeister et al.[9] reported a generalized model of software architecture
design that maintain implicitly or explicitly, a backlog of smaller needs, issues, problems they
need to tackle and ideas they might want to use. This backlog includes architecture assets, ideas,
context, constraints and architecturally significant requirements besides evaluation results. It
drives the workflow from architectural analysis to architectural synthesis and architectural
evaluation helping the architect to determine what to do next.
Hofmeister et al.[9] and Falessi et al.[10] reported that software architectures can be built fol-
lowing Software Architecture Design Methods (SADM), which mainly consist of three major
activities: requirement analysis, decision making and architectural evaluation activities, as
depicted in Fig 1.

Fig 1. General s/w Architecture Design Method[10]

However, no SADM is precise enough to encode all details on how software architecture must
be manipulated when performing an activity. Furthermore, Attribute-Driven Design ADD
method[11] follows a recursive design process where it starts by choosing an element of the
system for decomposition, then identifying candidate architectural drivers followed by design

J. Of College Of Education For Women vol. 24 (2) 2013

-555-

concepts that satisfy these drivers and finally instantiate architectural elements and allocate
responsibilities. Model-Driven Engineering and Aspect-Oriented techniques is reported by
Perovich et al.[12] to achieve systematic and assisted construction of the software architecture of
Enterprise Applications.

2. Modeling Development Process
Madsen[1] identified and modeled four different closely related domains in software devel-
opment process; problem domain, usage domain, development domain and system domains.
Problem domain, as the subject of information, is explicitly modeled as user understanding into
usage domain. This usage domain monitors and controls the information of the problem do-
main leading to the development domain. The development domain contains the software
developer, vision, development platform, reusable software parts, developer’s experience and
all the activities performed by the developer. Finally, system domain is the design and im-
plementation artifacts that describe and constitute the system. It contains everything needed to
design the system architecture sub-models and eventually run the system.
The developer’s conception of the system architecture is expressed thoroughly in the archi-
tecture sub-models in order to represent detailed descriptions to be used in the implementation
of any Domain Specific programming Language DSL later on. Any software model or lan-
guage must aim at meeting some essential success factors specific to the use of that language.
Without consideration of general success factors, such as commitment from higher manage-
ment or the availability of skilled staff, the essential success factors are; (1) Learnability[13]:
Developers have to learn an extra language and stay up-to-date. (2) Usability[14]: Easy and
convenient tools and methods supporting the language, (3) Expressiveness[15]: Using a DSL,
domain specific features can be implemented compactly, (4) Reusability[16]: Possible reuse at
model level of partial or even entire solutions, (5) Development costs[17]: The DSL helps de-
velopers to model domain concepts where corresponding source codes are generated auto-
matically, reducing development costs and time, (6) Reliability[13]: automation of large parts of
the development process leads to fewer errors.
After a brief introduction and definition of software modeling and software architecture design
in sections 1&2, section 3 outlines the proposed software modeling system. Implementation
and results are included in section 4. Then section 5 concludes the paper.

3. Proposed Software Modeling Systems
Modeling is the activity of connecting concepts in the referent system with the concepts in the
model system. From the above mentioned studies, a general software model can be thought of
by breaking any project understudy into three worlds or environments; problem, conceptual
and representational environment. Problem environment comprises the situation row problem
status. Conceptual environment comprises the conceptual models of the system and the
conceptual framework on which the conceptual model is founded. Representational envi-
ronment contains a representation of the conceptual models and the representational tools
used to build representational models. Hence, the modeling process involves the raw problem
environment, the developing efforts to constitute the conceptual environment and the problem
execution. Modeling can be achieved in the following stages.

a. Mapping real environment: Fig 2 illustrates the mapping of real environment tackled by
the developer who observes the phenomena of the problem environment, applies the con-
ceptual action needed producing descriptions that allow to setup specifications. Therefore,
one may define programming in this context as the process of abstraction in problem envi-

J. Of College Of Education For Women vol. 24 (2) 2013

-556-

ronment, whereas the abstraction in model environment is considered of three sub-functions;
the identification of phenomena and their properties, classification, and composition. Ele-
ments of the problem environment such as objects and their properties represent phenomena.

PhenomenaConceptDescription

Specification

Problem
Environment

Conceptual
Environment

Model
Environment

Interpretation

ObservingModelling

Specifying

Developer

Fig 2. Mapping Real System
The main concern of any modeling efforts is the programming and execution of specific ob-
struction process of this environment satisfying a systematic use conception to describe and
deal with the phenomena. Modeling in this context means putting the precise descriptions for
the observed phenomena which then results into specifications. Finally interpretation of the
resulting specifications for the produced model environment must is expected to represent the
phenomena.

b. Modeling real environment: Particularly when modeling intangible phenomena we need
to distinguish between phenomena in the system and phenomena in conceptual model. The
central points are the abstraction processes and the notions of concept and phenomenon.
When modeling, a set of entities in the problem environment may be considered as part of the
system, forcing the system developer to make delimitation of what constitutes the system and
of what constitutes the environment of the system. The developer defines the system, makes
framework and conceptual models of the system, and represents the models. A modeling
process will be an iterative process in which the modeler iterates over the elements of the
modeling process, as illustrated in Fig 3.

Problem
Environment

Conceptual
Environment

Representational
Environment

DevelopingModeling

System
(Software)

Framework

Models

Model
Using
Tools

Developer

Mapping

Fig 3. Modeling Real system
The system is defined by selecting entities in the problem environment and to regard them as
parts of the system. The conceptual models are formed on the basis of some chosen conceptual
framework then, representations of the conceptual models are expressed using suitable notation.
This definition demarcates which part of the problem environment is to be modeled.

J. Of College Of Education For Women vol. 24 (2) 2013

-557-

The framework of the conceptual environment assumes the kind of entities in the proposed
system specifies what kind of abstractions can be made over the system when forming the
conceptual models and determines how the system is conceived. While the used notation for
the representational environment determines how the conceptual model is represented and
therefore it influences how the system is conceived too. Furthermore, the modeling process
may have added complication by a role called problem owner. This situation can be consid-
ered problematic as the problem owner motivates a certain system demarcation and a certain
modeling perspective, which specifies the system-aspect that is important to portray in a
model. The conceptual framework and the representational tools are chosen on the basis of
their suitability for the system-aspect to be modeled[6, 18, 19].

c. Software Modeling: During modeling software process, the problem environment consti-
tute software domain, which means that a specific considered system consists of software in a
broad sense, i.e. program code, diagrams, or running programs are represented by some nota-
tion. Hence, investigating software from the perspective of the notation in which it is ex-
pressed, it can be understood in terms of its immediate constituents. Therefore, an immediate
conception of the software is obtained due to the fact that software is based on certain nota-
tion. However, immediate conception of software by developers is not enough for its reason-
ing; therefore abstractions are needed in order to cope with the inherited software complexity.

d. General Object Oriented Software Model: Object-oriented modeling makes the assump-
tion that systems are conceived in terms of phenomena and concepts. When making a concep-
tual model of the system, the model developer identifies phenomena in the system and creates
corresponding phenomena in the conceptual world. A phenomenon in the conceptual envi-
ronment is a manifestation of the fact that a part of the system is regarded in a specific way.
The properties that the model developer associates with the phenomena in the conceptual
world are dependent on the modeling perspective, which in turn is determined by the problem
owner.
The elements of the problem environment are modeled into interrelated concepts and phe-
nomena in the conceptual model by the developer abstraction process. The properties associ-
ated with the phenomena in the conceptual environment used to reason about the system.
These phenomena and the concepts are then represented by objects and classes in the repre-
sentational environment called the object oriented model. The object model helps us to reason
about the system being modeled by exposing a specific aspect of the system as properties of
the objects in the object model. Fig 4 illustrates the relationship between the object model and
the system.
Any objects in the object model of the representational environment needs to be associated
with specific phenomena in the problem environment, therefore object models are considered,
examined in system then update actions in object model. Each object model contains two dif-
ferent parts; a reference to the phenomenon it models and the phenomenon information, which
consists of object properties and relations.

J. Of College Of Education For Women vol. 24 (2) 2013

-558-

Problem
Environment

Conceptual
Environment

Representational
Environment

DevelopingRepresenting

SoftwareFramework

Elements
Phenomena

Concept

Object

Class

Model

Object-Oreinted
Model

Developer

Evaluation

Fig 4. General Object Oriented Software Model.
A reference to the phenomenon that the object models, is an expression by which the phe-
nomenon can be identified. Inter-object relations tell to which other objects an object is related
while object properties contain some information about the phenomenon that the object models.
If a phenomenon in the system is physical or otherwise tangible then an object that models this
phenomenon can contain a reference to the phenomenon in the form of some expression. This
expression might reference the phenomenon at hand. If a phenomenon is intangible, i. e. it is
not readily perceptible, then it can be referred to by its name or position, whichever applicable.
Fig 4 illustrates software model using a conceptual framework and notation based on ob-
ject-oriented principles. Phenomena in the conceptual environment represent conceptualiza-
tion of the software system and concepts represent abstractions (classifications) of similar
phenomena. Generally it also can be stated that phenomena in the conceptual environment are
associated with elements in the problem environment. They can contain references to phe-
nomena in the conceptual model to manifest relations to other phenomena in the conceptual
model, i.e. references are used to capture relations in the conceptual model to those of the
considered system.
Moreover, an object is a representation of phenomena in the conceptual model, must there-
fore contain two references; first, it refers to objects in the representational environment and
second, it refers to elements in the problem environment. A concept, which is a classification
based on shared properties of a number of phenomena, embodies knowledge about the phe-
nomena that exemplify the concept. In particular the concept must embody knowledge about
the conditions for the existence of a phenomenon, i.e. which conditions must hold in the sys-
tem before we can create a phenomenon in the conceptual model by making conceptualiza-
tions of the considered system.

4. Implementation and Discussion
Incorporating the object oriented modeling technique proposed in the previous section for a
complete system implementation can summarized as illustrated in Fig 5. For the purpose of
understandings, the model might be simply divided into several stages, namely analysis stage,
design stage and implementation stage, as described below.
The analysis stage comprises of three phases; problem phase, conceptual phase and require-
ment phase. This stage is concerned with examination of the problem domain and usage do-
main producing an object oriented model that determines functional and non-functional sys-
tem requirements including hardware and software components requirements. Besides, it
specifies a behavior model and a framework for the object oriented design stage. During
analysis stage, the user and the developer closely cooperate in order to construct the model.
The process is controlled by a system definition, delimitation, modeling and evaluation with
the customer verification. It is iterative process and only stops when the user and the devel-
oper agree that the descriptions are usable and express a common understanding.

J. Of College Of Education For Women vol. 24 (2) 2013

-559-

The design stage is concerned with specifying the overall structure of the system, resulting
mainly into object oriented system model. Besides, the developer refines the object model
and introduces an architecture model in order to understand the system model. Functional and
non-functional requirements are supported at this stage and system model is mapped onto
logical platform. At the design level, software domain is considered including either partial or
complete software descriptions. The system model is constructed from the object model. The
behavior model, together with the functional requirements, supplies the information for per-
forming the functionality to the object model. Constructive solution for how the non-
functional requirements and the organization of the logical platform combined with object
model and system model to produce the architecture model which starts with identification
then performs classification of components into classes.

Problem
Phase

User

Developer

Conceptual

Phase
Modelling Requirements

Phase

Analysis

Defining

Evaluation

Evolution

Analysis

 System
 Definition &

Object
Model

Framework

Behaviour
Model

Functional &
Non-functional
Requirements

OO Design

Stage

Designing

System
Model

Architectural
Model

Implementation

Stage

Developer
Testing

&
Validating

Developing

Implementing

Documentation
& Maintenance

Programs &
Configuration

Fig 5 Implementing OO Software Model.
Implementation stage is concerned with the realization of the system model. The structure
captured by the design must be implemented in certain programming language. In the imple-
mentation stage, the developer integrates the architectural model into this program during the
process and transforms the system model into a refined model in the form of programs and
configurations. Hence, the perspective on the platform becomes a physical perspective during
the implementation. This stage involves software domain (at the programming level), physi-
cal platform and object-oriented programming language. The model of the implementation
process includes an iterative cycle, where the program is constructed from the system and
architecture models under the influence of relevant non-functional requirements and the
physical platform. During implementation stage, programming techniques are available for
the developer in order to build the programs. Hence, the structure and the interactions de-
scribed by the architectural design must be implemented in a programming language, there-
fore it allows for system execution which is the target platform.

5. Conclusions
It is conceivable that object oriented modeling reduces system complexity by applying ob-
struction in terms of phenomena and concepts. The proposed model is based on "real world"
entities or objects. It requires experience in object-oriented modeling and will initially be de-

J. Of College Of Education For Women vol. 24 (2) 2013

-560-

rived from an analysis of the problem environment (abstract entities) towards model envi-
ronment (objects and classes) through abstraction and conceptualization with the collabora-
tion of problem domain experts (user). To reduce cost, the model is iterative and influenced
by task analysis, user interface design and use-case definition. It is planned to evolve into
system model and architecture model.
An important part of this model is the inclusion of analysis and evaluation activities as part of
architecture design that meets stakeholder's goals or concerns. While architecture evaluation
has been the focus of much prior work, the emphasis is typically on identifying candidate ar-
chitectures or evaluating the completed architecture. There has been far less work on incre-
mental or ongoing evaluation, and on architectural analysis. The proposed model reveals
these to be important research topics.
This paper presents a methodology for assistive technology software development which
seeks to provide a framework for requirements elicitation studies and their subsequent map-
ping through use-case driven object-oriented analysis to implementation using component
based software architectures. Usability evaluation is integrated into the process to provide
early feedback on the effectiveness of user interface components.

References
[1] Madsen O. L., Pedersen B. M., K. Nygaard K. Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley, Reading, Massachusetts, 1993,
ISBN:0-201-62430-3.
[2] Tippell P., Oregan J., Hardy P., Lysley A. An Object-Oriented Model for Assistive Tech-
nology Software Development. Themes Valley University, 2002.
[3] Thomsen M. Domain Object Models and User Interface. Department of Computer Science,
University of Aarhus, Denmark.
[4] Damma C. H., Hansen K., Thomsen M., Tyrsted M. Creative Object-Oriented Modeling:
Support for Intuition, exibility, and Collaboration in Case Tools. Department of Computer
Science, University of Aarhus, Denmark.
[5] Nowack P. Interacting Component, A conceptual Architecture Model. 3th European
Conference on Object-Oriented Programming ECOOP Workshops (ECOOP Workshops),
1999.
[6] Jacobsen, E. E.. Concepts and Language Mechanisms in Software Modeling. PhD thesis,
The Maersk Mc-Kinney Moeller Institute for Production Technology, University of Southern
Denmark., 2000.
[7] Perry D. E. Wolf A. L. Foundations for the Study of Software Architecture. SIGSOFT
Software Engineering Notes, 1992, 17(4): 40-52.
[8] Bosch J. Software Architecture: The Next Step. In EWSA'2004, 2004: 194-199.
 [9] Hofmeister C., Kruchten P., Nord R. L., Obbink J. H., Ran A., America P. Generalizing a
Model of Software Architecture Design from Five Industrial Approaches. In WICSA'2005,
2005: 77-88.
 [10] Falessi D., Cantone G., Kruchten P. Do Architecture Design Methods Meet Architects'
Needs?. In WICSA'2007, 2007: 5.
[11] Wojcik R., Bachmann F., Bass L., Clements P. C., Merson P., Nord R. L., Wood B. At-
tribute-Driven Design (ADD), Version 2.0. Technical Report CMU/SEI-2006-TR-023,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 2006.
[12] Perovich D., Bastarrica M. C., Rojas C. Aspect-Oriented Model-Driven Approach to
Architecture Design", 2008
[13] Spinellis B. D. Notable design patterns for domain-specific languages. Journal of Sys-
tems and Software, 2001, 56: 91–99 .

J. Of College Of Education For Women vol. 24 (2) 2013

-561-

[14] Spinellis B. D., Guruprasad V. Lightweight languages as software engineering tools.
Proceedings of the Conference on Domain-Specific Languages (DSL’97), USENIX, 1997:
67–76.
 [15] Mernik M., Heering J., Sloane A. M., When and how to develop domain-specific lan-
guages. ACM Computing Surveys, Dec. 2005, 37 (4): 316–344.
[16] Bell J., Bellegarde F., Hook J., Kieburts R. B. Software design for reliability and reuse: a
proof-of-concept demonstration. Proceedings Conference on TRI-Ada, ACM Press, 1994:
396–404.
[17] Christopher D. L., Ramming J.C. Two application languages in software production.
USENIX Symposium on Very High Level Languages Proceedings, 1994: 169–187.
[18] Nowack P. Structures and Interactions - Characterizing Object-Oriented Software Ar-
chitecture. PhD thesis, The Maersk Mc-Kinney Moeller Institute for Production Technology,
University of Southern Denmark, 2000.
[19] Jacobsen, E. E., Kristensen B.B., Nowack P. Architecture = Abstractions over Software.
Proceedings of the 32th International Conference on Technology of Object-Oriented Lan-
guages and Systems (TOOLS PACIFIC ’99), 1999: 89–99. IEEE Computer Society.

